Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675106

RESUMO

Predicting when a patient with advanced cancer is dying is a challenge and currently no prognostic test is available. We hypothesised that a dying process from cancer is associated with metabolic changes and specifically with changes in volatile organic compounds (VOCs). We analysed urine from patients with lung cancer in the last weeks of life by headspace gas chromatography mass spectrometry. Urine was acidified or alkalinised before analysis. VOC changes in the last weeks of life were identified using univariate, multivariate and linear regression analysis; 12 VOCs increased (11 from the acid dataset, 2 from the alkali dataset) and 25 VOCs decreased (23 from the acid dataset and 3 from the alkali dataset). A Cox Lasso prediction model using 8 VOCs predicted dying with an AUC of 0.77, 0.78 and 0.85 at 30, 20 and 10 days and stratified patients into a low (median 10 days), medium (median 50 days) or high risk of survival. Our data supports the hypothesis there are specific metabolic changes associated with the dying. The VOCs identified are potential biomarkers of dying in lung cancer and could be used as a tool to provide additional prognostic information to inform expert clinician judgement and subsequent decision making.


Assuntos
Neoplasias Pulmonares , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores , Neoplasias Pulmonares/diagnóstico , Compostos Orgânicos Voláteis/metabolismo , Modelos Lineares , Microextração em Fase Sólida/métodos
2.
Metabolites ; 12(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888774

RESUMO

Neutrophils play a key role in the pathophysiology of rheumatoid arthritis (RA) where release of ROS and proteases directly causes damage to joints and tissues. Neutrophil function can be modulated by Janus Kinase (JAK) inhibitor drugs, including tofacitinib and baricitinib, which are clinically effective treatments for RA. However, clinical trials have reported increased infection rates and transient neutropenia during therapy. The subtle differences in the mode of action, efficacy and safety of JAK inhibitors have been the primary research topic of many clinical trials and systematic reviews, to provide a more precise and targeted treatment to patients. The aim of this study was to determine both the differences in the metabolome of neutrophils from healthy controls and people with RA, and the effect of different JAK inhibitors on the metabolome of healthy and RA neutrophils. Isolated neutrophils from healthy controls (HC) (n = 6) and people with RA (n = 7) were incubated with baricitinib, tofacitinib or a pan-JAK inhibitor (all 200 ng/mL) for 2 h. Metabolites were extracted, and 1H nuclear magnetic resonance (NMR) was applied to study the metabolic changes. Multivariate analyses and machine learning models showed a divergent metabolic pattern in RA neutrophils compared to HC at 0 h (F1 score = 86.7%) driven by energy metabolites (ATP, ADP, GTP and glucose). No difference was observed in the neutrophil metabolome when treated with JAK inhibitors. However, JAK inhibitors significantly inhibited ROS production and baricitinib decreased NET production (p < 0.05). Bacterial killing was not impaired by JAK inhibitors, indicating that the effect of JAK inhibitors on neutrophils can inhibit joint damage in RA without impairing host defence. This study highlights altered energy metabolism in RA neutrophils which may explain the cause of their dysregulation in inflammatory disease.

3.
Front Immunol ; 11: 584116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469455

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting synovial joints. Neutrophils are believed to play an important role in both the initiation and progression of RA, and large numbers of activated neutrophils are found within both synovial fluid (SF) and synovial tissue from RA joints. In this study we analyzed paired blood and SF neutrophils from patients with severe, active RA (DAS28>5.1, n=3) using RNA-seq. 772 genes were significantly different between blood and SF neutrophils. IPA analysis predicted that SF neutrophils had increased expression of chemokines and ROS production, delayed apoptosis, and activation of signaling cascades regulating the production of NETs. This activated phenotype was confirmed experimentally by incubating healthy control neutrophils in cell-free RA SF, which was able to delay apoptosis and induce ROS production in both unprimed and TNFα primed neutrophils (p<0.05). RA SF significantly increased neutrophil migration through 3µM transwell chambers (p<0.05) and also increased production of NETs by healthy control neutrophils (p<0.001), including exposure of myeloperoxidase (MPO) and citrullinated histone-H3-positive DNA NETs. IPA analysis predicted NET production was mediated by signaling networks including AKT, RAF1, SRC, and NF-κB. Our results expand the understanding of the molecular changes that take place in the neutrophil transcriptome during migration into inflamed joints in RA, and the altered phenotype in RA SF neutrophils. Specifically, RA SF neutrophils lose their migratory properties, residing within the joint to generate signals that promote joint damage, as well as inflammation via recruitment and activation of both innate and adaptive immune cells. We propose that this activated SF neutrophil phenotype contributes to the chronic inflammation and progressive damage to cartilage and bone observed in patients with RA.


Assuntos
Artrite Reumatoide/imunologia , Quimiocinas/imunologia , Armadilhas Extracelulares/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Espécies Reativas de Oxigênio/imunologia , Líquido Sinovial/imunologia , Apoptose/imunologia , Feminino , Humanos , Articulações/imunologia , Masculino , Pessoa de Meia-Idade , Ativação de Neutrófilo/imunologia , Peroxidase/imunologia , Transdução de Sinais/imunologia , Membrana Sinovial/imunologia
4.
Metabolites ; 10(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255680

RESUMO

Headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) can be used to measure volatile organic compounds (VOCs) in human urine. However, there is no widely adopted standardised protocol for the preparation of urine samples for analysis resulting in an inability to compare studies reliably between laboratories. This paper investigated the effect of altering urine sample pH, volume, and vial size for optimising detection of VOCs when using HS-SPME-GC-MS. This is the first, direct comparison of H2SO4, HCl, and NaOH as treatment techniques prior to HS-SPME-GC-MS analysis. Altering urine sample pH indicates that H2SO4 is more effective at optimising detection of VOCs than HCl or NaOH. H2SO4 resulted in a significantly larger mean number of VOCs being identified per sample (on average, 33.5 VOCs to 24.3 in HCl or 12.2 in NaOH treated urine) and more unique VOCs, produced a more diverse range of classes of VOCs, and led to less HS-SPME-GC-MS degradation. We propose that adding 0.2 mL of 2.5 M H2SO4 to 1 mL of urine within a 10 mL headspace vial is the optimal sample preparation prior to HS-SPME-GC-MS analysis. We hope the use of our optimised method for urinary HS-SPME-GC-MS analysis will enhance our understanding of human disease and bolster metabolic biomarker identification.

5.
Front Immunol ; 10: 423, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915077

RESUMO

Neutrophil Extracellular Traps (NETs) are implicated in the development of auto-immunity in diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) through the externalization of intracellular neoepitopes e.g., dsDNA and nuclear proteins in SLE and citrullinated peptides in RA. The aim of this work was to use quantitative proteomics to identify and measure NET proteins produced by neutrophils from healthy controls, and from patients with RA and SLE to determine if NETs can be differentially-generated to expose different sets of neoepitopes. Ultra-pure neutrophils (>99%) from healthy individuals (n = 3) and patients with RA or SLE (n = 6 each) were incubated ± PMA (50 nM, PKC super-activator) or A23187 (3.8 µM, calcium ionophore) for 4 h. NETs were liberated by nuclease digestion and concentrated onto Strataclean beads prior to on-bead digestion with trypsin. Data-dependent LC-MS/MS analyses were conducted on a QExactive HF quadrupole-Orbitrap mass spectrometer, and label-free protein quantification was carried out using Progenesis QI. PMA-induced NETs were decorated with annexins, azurocidin and histone H3, whereas A23187-induced NETs were decorated with granule proteins including CAMP/LL37, CRISP3, lipocalin and MMP8, histones H1.0, H1.4, and H1.5, interleukin-8, protein-arginine deiminase-4 (PADI4), and α-enolase. Four proteins were significantly different between PMA-NETs from RA and SLE neutrophils (p < 0.05): RNASE2 was higher in RA, whereas MPO, leukocyte elastase inhibitor and thymidine phosphorylase were higher in SLE. For A23187-NETs, six NET proteins were higher in RA (p < 0.05), including CAMP/LL37, CRISP3, interleukin-8, MMP8; Thirteen proteins were higher in SLE, including histones H1.0, H2B, and H4. This work provides the first, direct comparison of NOX2-dependent (PMA) and NOX2-independent (A23187) NETs using quantitative proteomics, and the first direct comparison of RA and SLE NETs using quantitative proteomics. We show that it is the nature of the stimulant rather than neutrophil physiology that determines NET protein profiles in disease, since stimulation of NETosis in either a NOX2-dependent or a NOX2-independent manner generates broadly similar NET proteins irrespective of the disease background. We also use our proteomics pipeline to identify an extensive range of post-translationally modified proteins in RA and SLE, including histones and granule proteins, many of which are known targets of auto-antibodies in each disease.


Assuntos
Artrite Reumatoide/imunologia , Armadilhas Extracelulares/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Neutrófilos/imunologia , Adulto , Idoso , Apoptose , Artrite Reumatoide/metabolismo , DNA/metabolismo , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
6.
Free Radic Biol Med ; 125: 25-35, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29605448

RESUMO

Polymorphonuclear leukocytes, or neutrophils, are specialist phagocytic cells of the innate immune system. Their primary role is host defence against micro-organisms, which they kill via phagocytosis, followed by release of reactive oxygen species (ROS) and proteolytic enzymes within the phagosome. ROS are generated via the action of the NADPH oxidase (also known as NOX2), in a process termed the 'Respiratory Burst'. This process consumes large amounts of oxygen, which is converted into the highly-reactive superoxide radical O2- and H2O2. Subsequent activation of myeloperoxidase (MPO) generates secondary oxidants and chloroamines that are highly microbiocidal in nature, which together with proteases such as elastase and gelatinase provide a toxic intra-phagosomal environment able to kill a broad range of micro-organisms. However, under certain circumstances such as during an auto-immune response, neutrophils can be triggered to release ROS and proteases extracellularly causing damage to host tissues, modification of host proteins, lipids and DNA and dysregulation of oxidative homeostasis. This review describes the range of ROS species produced by human neutrophils with a focus on the implications of neutrophil redox products in autoimmune inflammation.


Assuntos
Doenças Autoimunes/etiologia , Doenças Autoimunes/patologia , Neutrófilos/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Humanos , Oxirredução
7.
Oncotarget ; 8(61): 102948-102964, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29262536

RESUMO

The functional significance of AKT in chronic lymphocytic leukemia (CLL) remains unclear. Given the importance of non-malignant T cells in regulating clonal expansion in CLL, we investigated the role of AKT in T cell-mediated cytoprotection and proliferation using an established co-culture system in which primary CLL cells were incubated on a monolayer of transfected mouse fibroblasts expressing human CD40L (CD154). Stimulation of CLL cells via CD40 induced activation of AKT, which was closely associated with downregulation of its negative regulator PTEN, and protected CLL cells from killing by bendamustine. This cytoprotective effect of CD40 stimulation was prevented by a selective inhibitor of AKT. Stimulation of CLL cells with CD154 + IL-4 or IL-21 induced proliferation detected as reduced fluorescence of cells pre-stained with CFSE. AKT inhibition produced a significant, consistent reduction in proliferation induced by CD154 + IL-4 and a reduction in proliferation induced by CD154 + IL-21 in most but not all cases. In contrast, AKT inhibition had no effect on the proliferation of normal B cells induced by CD154 + IL-4 or IL-21. These findings indicate that AKT contributes in a significant way to T-cell mediated survival and proliferation signalling in CLL and support the clinical evaluation of AKT inhibitors in this disease.

9.
PLoS One ; 5(7): e11435, 2010 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-20625401

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) has previously been shown to upregulate the expression of the endogenous calcineurin inhibitor, regulator of calcineurin 1, variant 4 (RCAN1.4). The aim of this study was to determine the role and regulation of VEGF-mediated RCAN1.4 expression, using human dermal microvascular endothelial cells (HDMECs) as a model system. METHODOLOGY/PRINCIPAL FINDINGS: We show that VEGF is able to induce RCAN1.4 expression during cellular proliferation and differentiation, and that VEGF-mediated expression of RCAN1.4 was inhibited by the use of inhibitors to protein kinase C (PKC) and calcineurin. Further analysis revealed that siRNA silencing of PKC-delta expression partially inhibited VEGF-stimulated RCAN1.4 expression. Knockdown of RCAN1.4 with siRNA resulted in a decrease in cellular migration and disrupted tubular morphogenesis when HDMECs were either stimulated with VEGF in a collagen gel or in an endothelial/fibroblast co-culture model of angiogenesis. Analysis of intracellular signalling revealed that siRNA mediated silencing of RCAN1.4 resulted in increased expression of specific nuclear factor of activated T-cells (NFAT) regulated genes. CONCLUSIONS/SIGNIFICANCE: Our data suggests that RCAN1.4 expression is induced by VEGFR-2 activation in a Ca(2+) and PKC-delta dependent manner and that RCAN1.4 acts to regulate calcineurin activity and gene expression facilitating endothelial cell migration and tubular morphogenesis.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Musculares/metabolismo , Proteína Quinase C-delta/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Antibacterianos/farmacologia , Calcimicina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas de Ligação a DNA , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Musculares/genética , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia
10.
BMC Res Notes ; 3: 53, 2010 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-20199660

RESUMO

BACKGROUND: RNA interference (RNAi) has been one of the most rapidly expanding areas of biological research in the past decade, revolutionizing the ability to analyze gene function. Thorough validation of siRNA duplexes is required prior to use in experimental systems, ideally by western blotting to show a reduction in protein levels. However, in many cases good antibodies are not available, and researchers must rely on RT-qPCR to detect knockdown of the mRNA species. FINDINGS: We have observed a phenomenon that gives a disparity between analyzing small interfering RNA (siRNA) efficacy by western blotting of the protein levels and real-time quantitative PCR (RT-qPCR) measurement of mRNA levels. Detection of this phenomenon was dependent upon the location of the target amplicon for PCR primers within the mRNA. CONCLUSIONS: Our data suggests that for certain mRNAs, degradation of the 3' mRNA fragment resulting from siRNA mediated cleavage is blocked, leaving an mRNA fragment that can act as a template for cDNA synthesis, giving rise to false negative results and the rejection of a valid siRNA duplex. We show that this phenomenon may be avoided by the careful design of RT-qPCR primers for each individual siRNA experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA