RESUMO
Although the impact of the SARS-CoV-2 pandemic on major metropolitan areas is broadly reported and readily available, regions with lower populations and more remote areas in the United States are understudied. The objective of this study is to determine the progression of SARS-CoV-2 sequence variants in a frontier and remote intermountain west state among university-associated communities. This study was conducted at two intermountain west universities from 2020 to 2022. Positive SARS-CoV-2 samples were confirmed by quantitative real-time reverse transcription-polymerase chain reaction and variants were identified by the next-generation sequencing of viral genomes. Positive results were obtained for 5355 samples, representing a positivity rate of 3.5% overall. The median age was 22 years. Viral genomic sequence data were analyzed for 1717 samples and phylogeny was presented. Associations between viral variants, age, sex, and reported symptoms among 1522 samples indicated a significant association between age and the Delta variant (B 1.167.2), consistent with the findings for other regions. An outbreak event of AY122 was detected August-October 2021. A 2-month delay was observed with respect to the timing of the first documented viral infection within this region compared to major metropolitan regions of the US.
RESUMO
Zinc oxide is an environmentally friendly and readily synthesized semiconductor with many industrial applications. ZnO powders were prepared by alkali precipitation using different [Zn(acetate)2(amine)x] compounds to alter the particle size and aspect ratio. Slow precipitations from 95 °C solutions produced micron-scale particles with morphologies of hexagonal plates, rods, and needles, depending on the precursor used. Powders prepared at 65 °C with rapid precipitation yielded particles with minimal morphology differences, but particle size was dependent on the precursor used. The smallest particles were produced using precursors that yielded crystals with low aspect ratios during high-temperature synthesis. Particles produced during rapid synthesis had sizes ranging from 21-45 nm. The materials were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, BET, and diffuse reflectance. The materials prepared using precursors with less-volatile amines were found to retain more organic material than ZnO produced using precursors with more volatile amines. The amount of organic material associated with the nanoparticles influenced the photocatalytic activity of the ZnO, with powders containing less organic material producing faster rate constants for the decolorizing of malachite green solutions under ultraviolet illumination, independent of particle size. [Zn(acetate)2(hydrazine)2] produced ZnO with the fastest rate constant and was recycled five times for dye degradation studies that revealed minimal to no reduction in catalytic efficiency.
RESUMO
Cells lining the uterus are responsible for storage and secretion of carbohydrates to support early embryonic development. Histotrophic secretions contain glycogen and glycolytic products such as lactate and pyruvate. Insufficient carbohydrate storage as glycogen has been correlated with infertility in women. While it is clear that changes in estrogen (17-ß-estradiol (E2)) and progesterone (P4) in vivo affect the distribution of glucose in the uterine cells and secretions, the biochemical mechanism(s) by which they affect this crucial allocation is not well understood. Furthermore, in cultured uterine cells, neither E2 nor P4 affect glycogen storage without insulin present. We hypothesized that P4 and E2 alone affect the activity of glycolytic enzymes, glucose and glycolytic flux to increase glycogen storage (E2) and catabolism (P4) and increase pyruvate and lactate levels in culture. We measured the rate of glucose uptake and glycolysis in a mink immortalized epithelial cell line (GMMe) after 24-h exposure to 10 µM P4 and 10 nM E2 (pharmacologic levels) at 5 mM glucose and determined the kinetic parameters (Vmax, Km) of all enzymes. While the activities of many glycolytic enzymes in GMMe cells were shown to be decreased by E2 treatment, in contrast, glucose uptake, glycolytic flux and metabolites levels were not affected by the treatments. The cellular rationale for P4- and E2-induced decreases in the activity of enzymes may be to prime the system for other regulators such as insulin. In vivo, E2 and P4 may be necessary but not sufficient signals for uterine cycle carbohydrate allocation.
Assuntos
Estradiol/metabolismo , Ciclo Estral/metabolismo , Glucose/metabolismo , Progesterona/metabolismo , Útero/metabolismo , Animais , Linhagem Celular , Ensaios Enzimáticos , Células Epiteliais , Feminino , Glucosefosfato Desidrogenase/metabolismo , Glicogênio/metabolismo , Glicólise/fisiologia , Cinética , Vison , Modelos Animais , Fosfoglucomutase/metabolismoRESUMO
BACKGROUND: A decrease in retinoic acid levels due to alcohol consumption has been proposed as a contributor to such conditions as fetal alcohol spectrum diseases and ethanol-induced cancers. One molecular mechanism, competitive inhibition by ethanol of the catalytic activity of human alcohol dehydrogenase (EC 1.1.1.1) (ADH) on all-trans-retinol oxidation has been shown for the ADH7 isoform. Ethanol metabolism also causes an increase in the free reduced nicotinamide adenine dinucleotide (NADH) in cells, which might reasonably be expected to decrease the retinol oxidation rate by product inhibition of ADH isoforms. METHODS: To understand the relative importance of these two mechanisms by which ethanol decreases the retinol oxidation in vivo we need to assess them quantitatively. We have built a model system of 4 reactions: (1) ADH oxidation of ethanol and NAD(+), (2) ADH oxidation of retinol and NAD(+), (3) oxidation of ethanol by a generalized Ethanol(oxidase) that uses NAD(+), (4) NADH(oxidase) which carries out NADH turnover. RESULTS: Using the metabolic modeling package ScrumPy, we have shown that the ethanol-induced increase in NADH contributes from 0% to 90% of the inhibition by ethanol, depending on (ethanol) and ADH isoform. Furthermore, while the majority of flux control of retinaldehyde production is exerted by ADH, Ethanol(oxidase) and the NADH(oxidase) contribute as well. CONCLUSIONS: Our results show that the ethanol-induced increase in NADH makes a contribution of comparable importance to the ethanol competitive inhibition throughout the range of conditions likely to occur in vivo, and must be considered in the assessment of the in vivo mechanism of ethanol interference with fetal development and other diseases.
Assuntos
Álcool Desidrogenase/metabolismo , Etanol/farmacologia , NAD/metabolismo , Vitamina A/metabolismo , Relação Dose-Resposta a Droga , Humanos , Isoenzimas , Modelos Biológicos , Oxirredução , Tretinoína/metabolismoRESUMO
Shiga toxin-producing Escherichia coli (STEC) bacteria are zoonotic pathogens. We report here the high-quality complete genome sequences of three STEC O177:H- (fliCH25) strains, SMN152SH1, SMN013SH2, and SMN197SH3. The assembled genomes consisted of one optical map-verified circular chromosome for each strain, plus two plasmids for SMN013SH2 and three plasmids for SMN152SH1 and SMN197SH3, respectively.