Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 312(3): e232471, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39254456

RESUMO

Artificial intelligence (AI) models for medical imaging tasks, such as classification or segmentation, require large and diverse datasets of images. However, due to privacy and ethical issues, as well as data sharing infrastructure barriers, these datasets are scarce and difficult to assemble. Synthetic medical imaging data generated by AI from existing data could address this challenge by augmenting and anonymizing real imaging data. In addition, synthetic data enable new applications, including modality translation, contrast synthesis, and professional training for radiologists. However, the use of synthetic data also poses technical and ethical challenges. These challenges include ensuring the realism and diversity of the synthesized images while keeping data unidentifiable, evaluating the performance and generalizability of models trained on synthetic data, and high computational costs. Since existing regulations are not sufficient to guarantee the safe and ethical use of synthetic images, it becomes evident that updated laws and more rigorous oversight are needed. Regulatory bodies, physicians, and AI developers should collaborate to develop, maintain, and continually refine best practices for synthetic data. This review aims to provide an overview of the current knowledge of synthetic data in medical imaging and highlights current key challenges in the field to guide future research and development.


Assuntos
Inteligência Artificial , Diagnóstico por Imagem , Humanos , Diagnóstico por Imagem/métodos
2.
J Magn Reson Imaging ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703134

RESUMO

BACKGROUND: Cartilage T2 can detect joints at risk of developing osteoarthritis. The quantitative double-echo steady state (qDESS) sequence is attractive for knee cartilage T2 mapping because of its acquisition time of under 5 minutes. Understanding the reproducibility errors associated with qDESS T2 is essential to profiling the technical performance of this biomarker. PURPOSE: To examine the combined acquisition and segmentation reproducibility of knee cartilage qDESS T2 using two different regional analysis schemes: 1) manual segmentation of subregions loaded during common activities and 2) automatic subregional segmentation. STUDY TYPE: Prospective. SUBJECTS: 11 uninjured participants (age: 28 ± 3 years; 8 (73%) female). FIELD STRENGTH/SEQUENCE: 3-T, qDESS. ASSESSMENT: Test-retest T2 maps were acquired twice on the same day and with a 1-week interval between scans. For each acquisition, average cartilage T2 was calculated in four manually segmented regions encompassing tibiofemoral contact areas during common activities and 12 automatically segmented regions from the deep-learning open-source framework for musculoskeletal MRI analysis (DOSMA) encompassing medial and lateral anterior, central, and posterior tibiofemoral regions. Test-retest T2 values from matching regions were used to evaluate reproducibility. STATISTICAL TESTS: Coefficients of variation (%CV), root-mean-square-average-CV (%RMSA-CV), and intraclass correlation coefficients (ICCs) assessed test-retest T2 reproducibility. The median of test-retest standard deviations was used for T2 precision. Bland-Altman (BA) analyses examined test-retest biases. The smallest detectable difference (SDD) was defined as the BA limit of agreement of largest magnitude. Significance was accepted for P < 0.05. RESULTS: All cartilage regions across both segmentation schemes demonstrated intraday and interday qDESS T2 CVs and RMSA-CVs of ≤5%. T2 ICC values >0.75 were observed in the majority of regions but were more variable in interday tibial comparisons. Test-retest T2 precision was <1.3 msec. The T2 SDD was 3.8 msec. DATA CONCLUSION: Excellent CV and RMSA-CV reproducibility may suggest that qDESS T2 increases or decreases >5% (3.8 msec) could represent changes to cartilage composition. TECHNICAL EFFICACY: Stage 2.

3.
PLoS Comput Biol ; 19(10): e1011462, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37856442

RESUMO

Measures of human movement dynamics can predict outcomes like injury risk or musculoskeletal disease progression. However, these measures are rarely quantified in large-scale research studies or clinical practice due to the prohibitive cost, time, and expertise required. Here we present and validate OpenCap, an open-source platform for computing both the kinematics (i.e., motion) and dynamics (i.e., forces) of human movement using videos captured from two or more smartphones. OpenCap leverages pose estimation algorithms to identify body landmarks from videos; deep learning and biomechanical models to estimate three-dimensional kinematics; and physics-based simulations to estimate muscle activations and musculoskeletal dynamics. OpenCap's web application enables users to collect synchronous videos and visualize movement data that is automatically processed in the cloud, thereby eliminating the need for specialized hardware, software, and expertise. We show that OpenCap accurately predicts dynamic measures, like muscle activations, joint loads, and joint moments, which can be used to screen for disease risk, evaluate intervention efficacy, assess between-group movement differences, and inform rehabilitation decisions. Additionally, we demonstrate OpenCap's practical utility through a 100-subject field study, where a clinician using OpenCap estimated musculoskeletal dynamics 25 times faster than a laboratory-based approach at less than 1% of the cost. By democratizing access to human movement analysis, OpenCap can accelerate the incorporation of biomechanical metrics into large-scale research studies, clinical trials, and clinical practice.


Assuntos
Modelos Biológicos , Smartphone , Humanos , Músculos/fisiologia , Software , Fenômenos Biomecânicos , Movimento/fisiologia
4.
Eur Radiol ; 34(10): 6680-6687, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38683384

RESUMO

OBJECTIVES: To develop and validate an open-source artificial intelligence (AI) algorithm to accurately detect contrast phases in abdominal CT scans. MATERIALS AND METHODS: Retrospective study aimed to develop an AI algorithm trained on 739 abdominal CT exams from 2016 to 2021, from 200 unique patients, covering 1545 axial series. We performed segmentation of five key anatomic structures-aorta, portal vein, inferior vena cava, renal parenchyma, and renal pelvis-using TotalSegmentator, a deep learning-based tool for multi-organ segmentation, and a rule-based approach to extract the renal pelvis. Radiomics features were extracted from the anatomical structures for use in a gradient-boosting classifier to identify four contrast phases: non-contrast, arterial, venous, and delayed. Internal and external validation was performed using the F1 score and other classification metrics, on the external dataset "VinDr-Multiphase CT". RESULTS: The training dataset consisted of 172 patients (mean age, 70 years ± 8, 22% women), and the internal test set included 28 patients (mean age, 68 years ± 8, 14% women). In internal validation, the classifier achieved an accuracy of 92.3%, with an average F1 score of 90.7%. During external validation, the algorithm maintained an accuracy of 90.1%, with an average F1 score of 82.6%. Shapley feature attribution analysis indicated that renal and vascular radiodensity values were the most important for phase classification. CONCLUSION: An open-source and interpretable AI algorithm accurately detects contrast phases in abdominal CT scans, with high accuracy and F1 scores in internal and external validation, confirming its generalization capability. CLINICAL RELEVANCE STATEMENT: Contrast phase detection in abdominal CT scans is a critical step for downstream AI applications, deploying algorithms in the clinical setting, and for quantifying imaging biomarkers, ultimately allowing for better diagnostics and increased access to diagnostic imaging. KEY POINTS: Digital Imaging and Communications in Medicine labels are inaccurate for determining the abdominal CT scan phase. AI provides great help in accurately discriminating the contrast phase. Accurate contrast phase determination aids downstream AI applications and biomarker quantification.


Assuntos
Algoritmos , Inteligência Artificial , Meios de Contraste , Radiografia Abdominal , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Tomografia Computadorizada por Raios X/métodos , Idoso , Estudos Retrospectivos , Radiografia Abdominal/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Pessoa de Meia-Idade , Aprendizado Profundo
5.
AJR Am J Roentgenol ; 222(1): e2329889, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37877596

RESUMO

BACKGROUND. Sarcopenia is commonly assessed on CT by use of the skeletal muscle index (SMI), which is calculated as the skeletal muscle area (SMA) at L3 divided by patient height squared (i.e., a height scaling power of 2). OBJECTIVE. The purpose of this study was to determine the optimal height scaling power for SMA measurements on CT and to test the influence of the derived optimal scaling power on the utility of SMI in predicting all-cause mortality. METHODS. This retrospective study included 16,575 patients (6985 men, 9590 women; mean age, 56.4 years) who underwent abdominal CT from December 2012 through October 2018. The SMA at L3 was determined using automated software. The sample was stratified into two groups: 5459 patients without major medical conditions (based on ICD-9 and ICD-10 codes) who were included in the analysis for determining the optimal height scaling power and 11,116 patients with major medical conditions who were included for the purpose of testing this power. The optimal scaling power was determined by allometric analysis (whereby regression coefficients were fitted to log-linear sex-specific models relating height to SMA) and by analysis of statistical independence of SMI from height across scaling powers. Cox proportional hazards models were used to test the influence of the derived optimal scaling power on the utility of SMI in predicting all-cause mortality. RESULTS. In allometric analysis, the regression coefficient of log(height) in patients 40 years old and younger was 1.02 in men and 1.08 in women, and in patients older than 40 years old, it was 1.07 in men and 1.10 in women (all p < .05 vs regression coefficient of 2). In analyses for statistical independence of SMI from height, the optimal height scaling power (i.e., those yielding correlations closest to 0) was, in patients 40 years old and younger, 0.97 in men and 1.08 in women, whereas in patients older than 40 years old, it was 1.03 in men and 1.09 in women. In the Cox model used for testing, SMI predicted all-cause mortality with a higher concordance index using of a height scaling power of 1 rather than 2 in men (0.675 vs 0.663, p < .001) and in women (0.664 vs 0.653, p < .001). CONCLUSION. The findings support a height scaling power of 1, rather than a conventional power of 2, for SMI computation. CLINICAL IMPACT. A revised height scaling power for SMI could impact the utility of CT-based sarcopenia diagnoses in risk assessment.


Assuntos
Sarcopenia , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Adulto , Sarcopenia/etiologia , Estudos Retrospectivos , Músculo Esquelético/patologia , Modelos de Riscos Proporcionais , Tomografia Computadorizada por Raios X/métodos
6.
Semin Musculoskelet Radiol ; 28(1): 78-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330972

RESUMO

The importance and impact of imaging biomarkers has been increasing over the past few decades. We review the relevant clinical and imaging terminology needed to understand the clinical and research applications of body composition. Imaging biomarkers of bone, muscle, and fat tissues obtained with dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging, and ultrasonography are described.


Assuntos
Composição Corporal , Imageamento por Ressonância Magnética , Humanos , Composição Corporal/fisiologia , Absorciometria de Fóton/métodos , Imageamento por Ressonância Magnética/métodos , Ultrassonografia , Tomografia Computadorizada por Raios X/métodos
7.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791508

RESUMO

Cryogenic electron tomography (cryoET) is a powerful tool in structural biology, enabling detailed 3D imaging of biological specimens at a resolution of nanometers. Despite its potential, cryoET faces challenges such as the missing wedge problem, which limits reconstruction quality due to incomplete data collection angles. Recently, supervised deep learning methods leveraging convolutional neural networks (CNNs) have considerably addressed this issue; however, their pretraining requirements render them susceptible to inaccuracies and artifacts, particularly when representative training data is scarce. To overcome these limitations, we introduce a proof-of-concept unsupervised learning approach using coordinate networks (CNs) that optimizes network weights directly against input projections. This eliminates the need for pretraining, reducing reconstruction runtime by 3-20× compared to supervised methods. Our in silico results show improved shape completion and reduction of missing wedge artifacts, assessed through several voxel-based image quality metrics in real space and a novel directional Fourier Shell Correlation (FSC) metric. Our study illuminates benefits and considerations of both supervised and unsupervised approaches, guiding the development of improved reconstruction strategies.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Aprendizado de Máquina não Supervisionado , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tomografia com Microscopia Eletrônica/métodos , Microscopia Crioeletrônica/métodos , Algoritmos , Aprendizado Profundo
8.
Magn Reson Med ; 89(2): 577-593, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161727

RESUMO

PURPOSE: To develop and validate a method for B 0 $$ {B}_0 $$ mapping for knee imaging using the quantitative Double-Echo in Steady-State (qDESS) exploiting the phase difference ( Δ Î¸ $$ \Delta \theta $$ ) between the two echoes acquired. Contrary to a two-gradient-echo (2-GRE) method, Δ Î¸ $$ \Delta \theta $$ depends only on the first echo time. METHODS: Bloch simulations were applied to investigate robustness to noise of the proposed methodology and all imaging studies were validated with phantoms and in vivo simultaneous bilateral knee acquisitions. Two phantoms and five healthy subjects were scanned using qDESS, water saturation shift referencing (WASSR), and multi-GRE sequences. Δ B 0 $$ \Delta {B}_0 $$ maps were calculated with the qDESS and the 2-GRE methods and compared against those obtained with WASSR. The comparison was quantitatively assessed exploiting pixel-wise difference maps, Bland-Altman (BA) analysis, and Lin's concordance coefficient ( ρ c $$ {\rho}_c $$ ). For in vivo subjects, the comparison was assessed in cartilage using average values in six subregions. RESULTS: The proposed method for measuring Δ B 0 $$ \Delta {B}_0 $$ inhomogeneities from a qDESS acquisition provided Δ B 0 $$ \Delta {B}_0 $$ maps that were in good agreement with those obtained using WASSR. Δ B 0 $$ \Delta {B}_0 $$ ρ c $$ {\rho}_c $$ values were ≥ $$ \ge $$ 0.98 and 0.90 in phantoms and in vivo, respectively. The agreement between qDESS and WASSR was comparable to that of a 2-GRE method. CONCLUSION: The proposed method may allow B0 correction for qDESS T 2 $$ {T}_2 $$ mapping using an inherently co-registered Δ B 0 $$ \Delta {B}_0 $$ map without requiring an additional B0 measurement sequence. More generally, the method may help shorten knee imaging protocols that require an auxiliary Δ B 0 $$ \Delta {B}_0 $$ map by exploiting a qDESS acquisition that also provides T 2 $$ {T}_2 $$ measurements and high-quality morphological imaging.


Assuntos
Joelho , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Joelho/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Água
9.
Magn Reson Med ; 90(5): 2052-2070, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37427449

RESUMO

PURPOSE: To develop a method for building MRI reconstruction neural networks robust to changes in signal-to-noise ratio (SNR) and trainable with a limited number of fully sampled scans. METHODS: We propose Noise2Recon, a consistency training method for SNR-robust accelerated MRI reconstruction that can use both fully sampled (labeled) and undersampled (unlabeled) scans. Noise2Recon uses unlabeled data by enforcing consistency between model reconstructions of undersampled scans and their noise-augmented counterparts. Noise2Recon was compared to compressed sensing and both supervised and self-supervised deep learning baselines. Experiments were conducted using retrospectively accelerated data from the mridata three-dimensional fast-spin-echo knee and two-dimensional fastMRI brain datasets. All methods were evaluated in label-limited settings and among out-of-distribution (OOD) shifts, including changes in SNR, acceleration factors, and datasets. An extensive ablation study was conducted to characterize the sensitivity of Noise2Recon to hyperparameter choices. RESULTS: In label-limited settings, Noise2Recon achieved better structural similarity, peak signal-to-noise ratio, and normalized-RMS error than all baselines and matched performance of supervised models, which were trained with 14 × $$ 14\times $$ more fully sampled scans. Noise2Recon outperformed all baselines, including state-of-the-art fine-tuning and augmentation techniques, among low-SNR scans and when generalizing to OOD acceleration factors. Augmentation extent and loss weighting hyperparameters had negligible impact on Noise2Recon compared to supervised methods, which may indicate increased training stability. CONCLUSION: Noise2Recon is a label-efficient reconstruction method that is robust to distribution shifts, such as changes in SNR, acceleration factors, and others, with limited or no fully sampled training data.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Aprendizado de Máquina Supervisionado
10.
J Magn Reson Imaging ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156716

RESUMO

With a substantial growth in the use of musculoskeletal MRI, there has been a growing need to improve MRI workflow, and faster imaging has been suggested as one of the solutions for a more efficient examination process. Consequently, there have been considerable advances in accelerated MRI scanning methods. This article aims to review the basic principles and applications of accelerated musculoskeletal MRI techniques including widely used conventional acceleration methods, more advanced deep learning-based techniques, and new approaches to reduce scan time. Specifically, conventional accelerated MRI techniques, including parallel imaging, compressed sensing, and simultaneous multislice imaging, and deep learning-based accelerated MRI techniques, including undersampled MR image reconstruction, super-resolution imaging, artifact correction, and generation of unacquired contrast images, are discussed. Finally, new approaches to reduce scan time, including synthetic MRI, novel sequences, and new coil setups and designs, are also reviewed. We believe that a deep understanding of these fast MRI techniques and proper use of combined acceleration methods will synergistically improve scan time and MRI workflow in daily practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA