Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(2): 409-416, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37942614

RESUMO

BACKGROUND: Evolving evidence suggests that besides signaling pathways, platelet activation involves a complex interplay between metabolic pathways to support thrombus growth. Selective targeting of metabolic checkpoints may inhibit platelet activation and provide a novel antiplatelet strategy. We, therefore, examined global metabolic changes that occur during the transition of human platelets from resting to an activated state to identify metabolites and associated pathways that contribute to platelet activation. METHODS: We performed metabolic profiling of resting and convulxin-stimulated human platelet samples. The differential levels, pathway analysis, and PCA (principal component analysis) were performed using Metaboanalyst. Metascape was used for metabolite network construction. RESULTS: Of the 401 metabolites identified, 202 metabolites were significantly upregulated, and 2 metabolites were downregulated in activated platelets. Of all the metabolites, lipids scored highly and constituted ≈50% of the identification. During activation, aerobic glycolysis supports energy demand and provides glycolytic intermediates required by metabolic pathways. Consistent with this, an important category of metabolites was carbohydrates, particularly the glycolysis intermediates that were significantly upregulated compared with resting platelets. We found that lysophospholipids such as 1-palmitoyl-GPA (glycero-3-phosphatidic acid), 1-stearoyl-GPS (glycero-3-phosphoserine), 1-palmitoyl-GPI (glycerophosphoinositol), 1-stearoyl-GPI, and 1-oleoyl-GPI were upregulated in activated platelets. We speculated that platelet activation could be linked to 1-carbon metabolism, a set of biochemical pathways that involve the transfer and use of 1-carbon units from amino acids, for cellular processes, including nucleotide and lysophospholipid synthesis. In alignment, based on pathway enrichment and network-based prioritization, the metabolites from amino acid metabolism, including serine, glutamate, and branched-chain amino acid pathway were upregulated in activated platelets, which might be supplemented by the high levels of glycolytic intermediates. CONCLUSIONS: Metabolic analysis of resting and activated platelets revealed that glycolysis and 1-carbon metabolism are necessary to support platelet activation.


Assuntos
Plaquetas , Ativação Plaquetária , Humanos , Plaquetas/metabolismo , Glicólise , Fosforilação , Transdução de Sinais
2.
Blood ; 139(8): 1234-1245, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-34529778

RESUMO

There is a critical need for cerebro-protective interventions to improve the suboptimal outcomes of patients with ischemic stroke who have been treated with reperfusion strategies. We found that nuclear pyruvate kinase muscle 2 (PKM2), a modulator of systemic inflammation, was upregulated in neutrophils after the onset of ischemic stroke in both humans and mice. Therefore, we determined the role of PKM2 in stroke pathogenesis by using murine models with preexisting comorbidities. We generated novel myeloid cell-specific PKM2-/- mice on wild-type (PKM2fl/flLysMCre+) and hyperlipidemic background (PKM2fl/flLysMCre+Apoe-/-). Controls were littermate PKM2fl/flLysMCre- or PKM2fl/flLysMCre-Apoe-/- mice. Genetic deletion of PKM2 in myeloid cells limited inflammatory response in peripheral neutrophils and reduced neutrophil extracellular traps after cerebral ischemia and reperfusion, suggesting that PKM2 promotes neutrophil hyperactivation in the setting of stroke. In the filament and autologous clot and recombinant tissue plasminogen activator stroke models, irrespective of sex, deletion of PKM2 in myeloid cells in either wild-type or hyperlipidemic mice reduced infarcts and enhanced long-term sensorimotor recovery. Laser speckle imaging revealed improved regional cerebral blood flow in myeloid cell-specific PKM2-deficient mice that was concomitant with reduced post-ischemic cerebral thrombo-inflammation (intracerebral fibrinogen, platelet [CD41+] deposition, neutrophil infiltration, and inflammatory cytokines). Mechanistically, PKM2 regulates post-ischemic inflammation in peripheral neutrophils by promoting STAT3 phosphorylation. To enhance the translational significance, we inhibited PKM2 nuclear translocation using a small molecule and found significantly reduced neutrophil hyperactivation and improved short-term and long-term functional outcomes after stroke. Collectively, these findings identify PKM2 as a novel therapeutic target to improve brain salvage and recovery after reperfusion.


Assuntos
Trombose Intracraniana/enzimologia , AVC Isquêmico/enzimologia , Ativação de Neutrófilo , Neutrófilos/enzimologia , Piruvato Quinase/metabolismo , Animais , Feminino , Inflamação/enzimologia , Inflamação/genética , Trombose Intracraniana/genética , AVC Isquêmico/genética , Masculino , Camundongos , Camundongos Knockout para ApoE , Piruvato Quinase/genética
3.
Circ Res ; 130(9): 1289-1305, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35400205

RESUMO

BACKGROUND: The glycolytic enzyme PKM2 (pyruvate kinase muscle 2) is upregulated in monocytes/macrophages of patients with atherosclerotic coronary artery disease. However, the role of cell type-specific PKM2 in the setting of atherosclerosis remains to be defined. We determined whether myeloid cell-specific PKM2 regulates efferocytosis and atherosclerosis. METHODS: We generated myeloid cell-specific PKM2-/- mice on Ldlr (low-density lipoprotein receptor)-deficient background (PKM2mye-KOLdlr-/-). Controls were littermate PKM2WTLdlr-/- mice. Susceptibility to atherosclerosis was evaluated in whole aortae and cross sections of the aortic sinus in male and female mice fed a high-fat Western diet for 14 weeks, starting at 8 weeks. RESULTS: PKM2 was upregulated in macrophages of Ldlr-/- mice fed a high-fat Western diet compared with chow diet. Myeloid cell-specific deletion of PKM2 led to a significant reduction in lesions in the whole aorta and aortic sinus despite high cholesterol and triglyceride levels. Furthermore, we found decreased macrophage content in the lesions of myeloid cell-specific PKM2-/- mice associated with decreased MCP-1 (monocyte chemoattractant protein 1) levels in plasma, reduced transmigration of macrophages in response to MCP-1, and impaired glycolytic rate. Macrophages isolated from myeloid-specific PKM2-/- mice fed the Western diet exhibited reduced expression of proinflammatory genes, including MCP-1, IL (interleukin)-1ß, and IL-12. Myeloid cell-specific PKM2-/- mice exhibited reduced apoptosis concomitant with enhanced macrophage efferocytosis and upregulation of LRP (LDLR-related protein)-1 in macrophages in vitro and atherosclerotic lesions in vivo. Silencing LRP-1 in PKM2-deficient macrophages restored inflammatory gene expression and reduced efferocytosis. As a therapeutic intervention, inhibiting PKM2 nuclear translocation using a small molecule reduced glycolytic rate, enhanced efferocytosis, and reduced atherosclerosis in Ldlr-/- mice. CONCLUSIONS: Genetic deletion of PKM2 in myeloid cells or limiting its nuclear translocation reduces atherosclerosis by suppressing inflammation and enhancing efferocytosis.


Assuntos
Aterosclerose , Piruvato Quinase/metabolismo , Receptores de LDL , Animais , Aorta/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Fagocitose , Receptores de LDL/metabolismo
4.
Stroke ; 54(9): 2409-2419, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449422

RESUMO

BACKGROUND: Obesity-induced hyperglycemia is a significant risk factor for stroke. Integrin α9ß1 is expressed on neutrophils and stabilizes adhesion to the endothelium via ligands, including Fn-EDA (fibronectin containing extra domain A) and tenascin C. Although myeloid deletion of α9 reduces susceptibility to ischemic stroke, it is unclear whether this is mediated by neutrophil-derived α9. We determined the role of neutrophil-specific α9 in stroke outcomes in a mice model with obesity-induced hyperglycemia. METHODS: α9Neu-KO (α9fl/flMRP8Cre+) and littermate control α9WT (α9fl/flMRP8Cre-) mice were fed on a 60% high-fat diet for 20 weeks to induce obesity-induced hyperglycemia. Functional outcomes were evaluated up to 28 days after stroke onset in mice of both sexes using a transient (30 minutes) middle cerebral artery ischemia. Infarct volume (magnetic resonance imaging) and postreperfusion thrombo-inflammation (thrombi, fibrin, neutrophil, phospho-nuclear factor kappa B [p-NFκB], TNF [tumor necrosis factor]-α, and IL [interleukin]-1ß levels, markers of neutrophil extracellular traps) were measured post 6 or 48 hours of reperfusion. In addition, functional outcomes (modified Neurological Severity Score, rota-rod, corner, and wire-hanging test) were measured for up to 4 weeks. RESULTS: Stroke upregulated neutrophil α9 expression more in obese mice (P<0.05 versus lean mice). Irrespective of sex, deletion of neutrophil α9 improved functional outcomes up to 4 weeks, concomitant with reduced infarct, improved cerebral blood flow, decreased postreperfusion thrombo-inflammation, and neutrophil extracellular traps formation (NETosis) (P<0.05 versus α9WT obese mice). Obese α9Neu-KO mice were less susceptible to thrombosis in FeCl3 injury-induced carotid thrombosis model. Mechanistically, we found that α9/cellular fibronectin axis contributes to NETosis via ERK (extracellular signal-regulated kinase) and PAD4 (peptidyl arginine deiminase 4), and neutrophil α9 worsens stroke outcomes via cellular fibronectin-EDA but not tenascin C. Obese wild-type mice infused with anti-integrin α9 exhibited improved functional outcomes up to 4 weeks (P<0.05 versus vehicle). CONCLUSIONS: Genetic ablation of neutrophil-specific α9 or pharmacological inhibition improves long-term functional outcomes after stroke in mice with obesity-induced hyperglycemia, most likely by limiting thrombo-inflammation.


Assuntos
Acidente Vascular Cerebral , Trombose , Masculino , Feminino , Camundongos , Animais , Neutrófilos/patologia , Fibronectinas , Camundongos Obesos , Camundongos Knockout , Acidente Vascular Cerebral/patologia , Trombose/patologia , Inflamação/patologia , NF-kappa B , Infarto , Obesidade/complicações , Obesidade/metabolismo , Camundongos Endogâmicos C57BL
5.
Blood ; 137(12): 1658-1668, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33027814

RESUMO

Very little is known about the role of metabolic regulatory mechanisms in platelet activation and thrombosis. Dimeric pyruvate kinase M2 (PKM2) is a crucial regulator of aerobic glycolysis that facilitates the production of lactate and metabolic reprogramming. Herein, we report that limiting PKM2 dimer formation, using the small molecule inhibitor ML265, negatively regulates lactate production and glucose uptake in human and murine stimulated platelets. Furthermore, limiting PKM2 dimer formation reduced agonist-induced platelet activation, aggregation, clot retraction, and thrombus formation under arterial shear stress in vitro in both human and murine platelets. Mechanistically, limiting PKM2 dimerization downregulated phosphatidylinositol 3-kinase (PI3K)-mediated protein kinase B or serine/threonine-specific protein kinase (Akt)/glycogen synthase kinase 3 (GSK3) signaling in human and murine platelets. To provide further evidence for the role of PKM2 in platelet function, we generated a megakaryocyte or platelet-specific PKM2-/- mutant strain (PKM2fl/flPF4Cre+). Platelet-specific PKM2-deficient mice exhibited impaired agonist-induced platelet activation, aggregation, clot retraction, and PI3K-mediated Akt/GSK3 signaling and were less susceptible to arterial thrombosis in FeCl3 injury-induced carotid- and laser injury-induced mesenteric artery thrombosis models, without altering hemostasis. Wild-type mice treated with ML265 were less susceptible to arterial thrombosis with unaltered tail bleeding times. These findings reveal a major role for PKM2 in coordinating multiple aspects of platelet function, from metabolism to cellular signaling to thrombosis, and implicate PKM2 as a potential target for antithrombotic therapeutic intervention.


Assuntos
Ativação Plaquetária , Piruvato Quinase/metabolismo , Trombose/metabolismo , Animais , Plaquetas/metabolismo , Feminino , Glucose/metabolismo , Glicólise , Humanos , Masculino , Camundongos Endogâmicos C57BL
6.
Stroke ; 53(5): 1802-1812, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35354299

RESUMO

Cerebral ischemia and reperfusion initiate cellular events in brain that lead to neurological disability. Investigating these cellular events provides ample targets for developing new treatments. Despite considerable work, no such therapy has translated into successful stroke treatment. Among other issues-such as incomplete mechanistic knowledge and faulty clinical trial design-a key contributor to prior translational failures may be insufficient scientific rigor during preclinical assessment: nonblinded outcome assessment; missing randomization; inappropriate sample sizes; and preclinical assessments in young male animals that ignore relevant biological variables, such as age, sex, and relevant comorbid diseases. Promising results are rarely replicated in multiple laboratories. We sought to address some of these issues with rigorous assessment of candidate treatments across 6 independent research laboratories. The Stroke Preclinical Assessment Network (SPAN) implements state-of-the-art experimental design to test the hypothesis that rigorous preclinical assessment can successfully reduce or eliminate common sources of bias in choosing treatments for evaluation in clinical studies. SPAN is a randomized, placebo-controlled, blinded, multilaboratory trial using a multi-arm multi-stage protocol to select one or more putative stroke treatments with an implied high likelihood of success in human clinical stroke trials. The first stage of SPAN implemented procedural standardization and experimental rigor. All participating research laboratories performed middle cerebral artery occlusion surgery adhering to a common protocol and rapidly enrolled 913 mice in the first of 4 planned stages with excellent protocol adherence, remarkable data completion and low rates of subject loss. SPAN stage 1 successfully implemented treatment masking, randomization, prerandomization inclusion/exclusion criteria, and blinded assessment to exclude bias. Our data suggest that a large, multilaboratory, preclinical assessment effort to reduce known sources of bias is feasible and practical. Subsequent SPAN stages will evaluate candidate treatments for potential success in future stroke clinical trials using aged animals and animals with comorbid conditions.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Idoso , Animais , Encéfalo , Isquemia Encefálica/terapia , Estudos de Viabilidade , Humanos , Infarto da Artéria Cerebral Média/terapia , Masculino , Camundongos , Acidente Vascular Cerebral/terapia
7.
Blood ; 135(11): 857-861, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31951649

RESUMO

Evidence suggests that neutrophils contribute to thrombosis via several mechanisms, including neutrophil extracellular traps (NETs) formation. Integrin α9ß1 is highly expressed on neutrophils when compared with monocytes. It undergoes affinity upregulation on neutrophil activation, and stabilizes adhesion to the activated endothelium. The role of integrin α9 in arterial thrombosis remains unexplored. We generated novel myeloid cell-specific integrin α9-/- mice (α9fl/flLysMCre+) to study the role of integrin α9 in arterial thrombosis. α9fl/fl littermates were used as controls. We report that α9fl/flLysMCre+ mice were less susceptible to arterial thrombosis in ferric chloride (FeCl3) and laser injury-induced thrombosis models with unaltered hemostasis. Neutrophil elastase-positive cells were significantly reduced in α9fl/flLysMCre+ mice concomitant with reduction in neutrophil count, myeloperoxidase levels, and red blood cells in the FeCl3 injury-induced carotid thrombus. The percentage of cells releasing NETs was significantly reduced in α9fl/flLysMCre+ mouse neutrophils stimulated with thrombin-activated platelets. Furthermore, we found a significant decrease in neutrophil-mediated platelet aggregation and cathepsin-G secretion in α9fl/flLysMCre+ mice. Transfusion of α9fl/fl neutrophils in α9fl/flLysMCre+ mice restored thrombosis similar to α9fl/fl mice. Treatment of wild-type mice with anti-integrin α9 antibody inhibited arterial thrombosis. This study identifies the potential role of integrin α9 in modulating arterial thrombosis.


Assuntos
Integrinas/antagonistas & inibidores , Integrinas/metabolismo , Células Mieloides/metabolismo , Trombose/metabolismo , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Agregação Plaquetária , Trombose/etiologia , Trombose/prevenção & controle
8.
Exp Eye Res ; 225: 109249, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36152913

RESUMO

Previously we identified B6.EDA+/+ mice as a novel mouse model that presents with elevated IOP and trabecular meshwork damage. Here, we expand on our previous findings by measuring aqueous humor outflow facility and analyzing the integrity of the inner wall of Schlemm's canal. As expected, intraocular pressure (IOP) was increased, and outflow facility was decreased compared to C57BL/6J controls. B6.EDA+/+ mice had significantly increased expression of the adherens junction protein, VE-cadherin by the inner wall endothelium of Schlemm's canal. These data suggest that in addition to trabecular meshwork damage, there are changes in Schlemm's canal in B6.EDA+/+ mice that lead to aqueous outflow dysfunction and ocular hypertension.


Assuntos
Glaucoma , Malha Trabecular , Camundongos , Animais , Camundongos Endogâmicos C57BL , Esclera , Humor Aquoso/metabolismo , Pressão Intraocular , Modelos Animais de Doenças
9.
Circ Res ; 126(12): 1779-1794, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32195632

RESUMO

RATIONALE: Currently, there is no effective intervention available that can reduce brain damage following reperfusion. Clinical studies suggest a positive correlation between the increased influx of neutrophils and severity of brain injury following reperfusion. Integrin α9ß1 is highly expressed on activated neutrophils and contributes to stable adhesion, but its role in stroke outcome has not been demonstrated to date. OBJECTIVE: We sought to determine the mechanistic role of myeloid-specific α9ß1 in the progression of ischemic stroke in murine models with preexisting comorbidities. METHODS AND RESULTS: We generated novel myeloid-specific α9-deficient (α9-/-) wild type (α9fl/flLysMCre+/-), hyperlipidemic (α9fl/flLysMCre+/-Apoe-/-), and aged (bone marrow chimeric) mice to evaluate stroke outcome. Susceptibility to ischemia/reperfusion injury was evaluated at 1, 7, and 28 days following reperfusion in 2 models of experimental stroke: filament and embolic. We found that peripheral neutrophils displayed elevated α9 expression following stroke. Irrespective of sex, genetic deletion of α9 in myeloid cells improved short- and long-term stroke outcomes in the wild type, hyperlipidemic, and aged mice. Improved stroke outcome and enhanced survival in myeloid-specific α9-/- mice was because of marked decrease in cerebral thromboinflammatory response as evidenced by reduced fibrin, platelet thrombi, neutrophil, NETosis, and decreased phospho-NF-κB (nuclear factor-κB), TNF (tumor necrosis factor)-α, and IL (interleukin)-1ß levels. α9-/- mice were less susceptible to FeCl3 injury-induced carotid artery thrombosis that was concomitant with improved regional cerebral blood flow following stroke as revealed by laser speckle imaging. Mechanistically, fibronectin containing extra domain A, a ligand for integrin α9, partially contributed to α9-mediated stroke exacerbation. Infusion of a specific anti-integrin α9 inhibitor into hyperlipidemic mice following reperfusion significantly reduced infarct volume and improved short- and long-term functional outcomes up to 28 days. CONCLUSIONS: We provide genetic and pharmacological evidence for the first time that targeting myeloid-specific integrin α9ß1 improves short- and long-term functional outcomes in stroke models with preexisting comorbidities by limiting cerebral thrombosis and inflammation.


Assuntos
Infarto da Artéria Cerebral Média/metabolismo , Integrinas/metabolismo , Células Mieloides/metabolismo , Trombose/metabolismo , Envelhecimento/patologia , Animais , Armadilhas Extracelulares/metabolismo , Fibrina/metabolismo , Fibronectinas/metabolismo , Deleção de Genes , Hiperlipidemias/complicações , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Inflamação , Integrinas/genética , Interleucina-1beta/metabolismo , Camundongos , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Trombose/complicações , Trombose/patologia , Fator de Necrose Tumoral alfa/metabolismo
11.
J Neurosci ; 40(15): 3119-3129, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32144179

RESUMO

Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bß2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo Bß2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bß2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo Last, deletion of Bß2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bß2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bß2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke.SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bß2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bß2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bß2 as a potential pharmacological target to protect the brain from stroke injury.


Assuntos
Isquemia Encefálica/genética , Isquemia Encefálica/prevenção & controle , Dinaminas/genética , Neurônios/metabolismo , Animais , Cálcio/metabolismo , Dinaminas/metabolismo , Feminino , Homeostase , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fosforilação , Cultura Primária de Células , Proteína Fosfatase 2/genética , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle , Superóxidos/metabolismo
12.
PLoS Pathog ; 15(5): e1007800, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31116795

RESUMO

Staphylococcus aureus is a leading cause of endovascular infections. This bacterial pathogen uses a diverse array of surface adhesins to clump in blood and adhere to vessel walls, leading to endothelial damage, development of intravascular vegetations and secondary infectious foci, and overall disease progression. In this work, we describe a novel strategy used by S. aureus to control adhesion and clumping through activity of the ArlRS two-component regulatory system, and its downstream effector MgrA. Utilizing a combination of in vitro cellular assays, and single-cell atomic force microscopy, we demonstrated that inactivation of this ArlRS-MgrA cascade inhibits S. aureus adhesion to a vast array of relevant host molecules (fibrinogen, fibronectin, von Willebrand factor, collagen), its clumping with fibrinogen, and its attachment to human endothelial cells and vascular structures. This impact on S. aureus adhesion was apparent in low shear environments, and in physiological levels of shear stress, as well as in vivo in mouse models. These effects were likely mediated by the de-repression of giant surface proteins Ebh, SraP, and SasG, caused by inactivation of the ArlRS-MgrA cascade. In our in vitro assays, these giant proteins collectively shielded the function of other surface adhesins and impaired their binding to cognate ligands. Finally, we demonstrated that the ArlRS-MgrA regulatory cascade is a druggable target through the identification of a small-molecule inhibitor of ArlRS signaling. Our findings suggest a novel approach for the pharmacological treatment and prevention of S. aureus endovascular infections through targeting the ArlRS-MgrA regulatory system.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Endotélio Vascular/microbiologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Animais , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Fibrinogênio/genética , Fibrinogênio/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/patologia
13.
Arterioscler Thromb Vasc Biol ; 40(7): 1738-1747, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434411

RESUMO

OBJECTIVE: The extracellular matrix of atherosclerotic arteries contains abundant deposits of cellular Fn-EDA (fibronectin containing extra domain A), suggesting a functional role in the pathophysiology of atherosclerosis. Fn-EDA is synthesized by several cell types, including endothelial cells (ECs) and smooth muscle cells (SMCs), which are known to contribute to different stages of atherosclerosis. Although previous studies using global Fn-EDA-deficient mice have demonstrated that Fn-EDA is proatherogenic, the cell-specific role of EC versus SMC-derived-Fn-EDA in atherosclerosis has not been investigated yet. Approach and Results: To determine the relative contribution of different pools of Fn-EDA in atherosclerosis, we generated mutant strains lacking Fn-EDA in the ECs (Fn-EDAEC-KO) or smooth muscle cells (Fn-EDASMC-KO) on apolipoprotein E-deficient (Apoe-/-) background. The extent of atherosclerotic lesion progression was evaluated in whole aortae, and cross-sections of the aortic sinus in male and female mice fed a high-fat Western diet for either 4 weeks (early atherosclerosis) or 14 weeks (late atherosclerosis). Irrespective of sex, Fn-EDAEC-KO, but not Fn-EDASMC-KO mice, exhibited significantly reduced early atherogenesis concomitant with decrease in inflammatory cells (neutrophil and macrophage) and VCAM-1 (vascular cell adhesion molecule-1) expression levels within the plaques. In late atherosclerosis model, irrespective of sex, Fn-EDASMC-KO mice exhibited significantly reduced atherogenesis, but not Fn-EDAEC-KO mice, that was concomitant with decreased macrophage content within plaques. Lesional SMCs, collagen content, and plasma inflammatory cytokines (TNF-α [tumor necrosis factor-α] and IL-1ß [interleukin-1ß]), total cholesterol, and triglyceride levels were comparable among groups. CONCLUSIONS: EC-derived Fn-EDA contributes to early atherosclerosis, whereas SMC-derived Fn-EDA contributes to late atherosclerosis.


Assuntos
Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Fibronectinas/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/patologia , Placa Aterosclerótica , Animais , Aorta/metabolismo , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Citocinas/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/patologia , Feminino , Fibronectinas/deficiência , Fibronectinas/genética , Mediadores da Inflamação/sangue , Lipídeos/sangue , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Neutrófilos/metabolismo , Transdução de Sinais , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/metabolismo
14.
J Stroke Cerebrovasc Dis ; 30(11): 106077, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34500199

RESUMO

BACKGROUND: The mechanism of increased risk of venous thromboembolism (VTE) after acute ischemic stroke (AIS) is unclear. In this study, we aimed to evaluate the risk of VTE in hospitalizations due to AIS as compared to those due to non-vascular neurological conditions. We also aimed to assess any potential association between VTE risk and the use of intravenous thrombolysis (rtPA) among hospitalizations with AIS. MATERIALS AND METHODS: In this case-control study, data were obtained from the Nationwide Inpatient Sample 2016-2018. Propensity score matching was used to adjust for the baseline differences between the groups. Logistic regression analysis was used to compare the risk of VTE. RESULTS: We identified 1,541,685 hospitalizations due to AIS and 1,453,520 hospitalizations due to non-vascular neurological diagnoses that served as controls. After propensity score matching, 640,560 cases with AIS and corresponding well-matched controls were obtained. Hospitalizations due to AIS had higher odds of VTE as compared to the controls [odds ratio (OR) 1.50, 95% confidence interval (CI) 1.40-1.60, P<0.001]. Among hospitalizations with AIS, 184,065 (11.9%) got rtPA. The odds of VTE were lower among the AIS hospitalizations that received rtPA as compared to those that did not (OR 0.89, 95% CI 0.79-0.99, P0.035). CONCLUSION: Hospitalizations due to AIS have a higher risk of VTE as compared to the non-vascular neurological controls. Among AIS cases, the risk of VTE is lower among patients treated with rtPA. These epidemiological findings support the hypothesis that the risk of VTE after AIS might be partly mediated by an intrinsic pro-coagulant state.


Assuntos
AVC Isquêmico , Doenças do Sistema Nervoso , Tromboembolia Venosa , Estudos de Casos e Controles , Hospitalização , Humanos , AVC Isquêmico/epidemiologia , AVC Isquêmico/terapia , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/terapia , Medição de Risco , Tromboembolia Venosa/epidemiologia
15.
Stroke ; 51(6): 1855-1861, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32397935

RESUMO

Background and Purpose- We aim to determine the potential impact on stroke thrombolysis of drip-and-ship helicopter flights and specifically of their low-frequency vibrations (LFVs). Methods- Mice with a middle cerebral artery autologous thromboembolic occlusion were randomized to receive rtPA (recombinant tissue-type plasminogen activator; or saline) 90 minutes later in 3 different settings: (1) a motion platform simulator that reproduced the LFV signature of the helicopter, (2) a standardized actual helicopter flight, and (3) a ground control. Results- Mice assigned to the LFV simulation while receiving tPA had smaller infarctions (31.6 versus 54.9 mm3; P=0.007) and increased favorable neurological outcomes (86% versus 28%; P=0.0001) when compared with ground controls. Surprisingly, mice receiving tPA in the helicopter did not exhibit smaller infarctions (47.8 versus 54.9 mm3; P=0.58) nor improved neurological outcomes (37% versus 28%; P=0.71). This could be due to a causative effect of the 20- to 30-Hz band, which was inadvertently attenuated during actual flights. Mice using saline showed no differences between the LFV simulator and controls with respect to infarct size (80.9 versus 95.3; P=0.81) or neurological outcomes (25% versus 11%; P=0.24), ruling out an effect of LFV alone. There were no differences in blood-brain barrier permeability between LFV simulator or helicopter, compared with controls (2.45-3.02 versus 4.82 mm3; P=0.14). Conclusions- Vibration in the low-frequency range (0.5-120 Hz) is synergistic with rtPA, significantly improving the effectiveness of thrombolysis without impairing blood-brain barrier permeability. Our findings reveal LFV as a novel, safe, and simple-to-deliver intervention that could improve the outcomes of patients. Visual Overview- An online visual overview is available for this article.


Assuntos
Infarto Encefálico/terapia , Acidente Vascular Cerebral/terapia , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/farmacologia , Vibração , Animais , Modelos Animais de Doenças , Masculino , Camundongos
16.
Phys Chem Chem Phys ; 22(4): 2098-2104, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31904061

RESUMO

Redox active π-conjugated organic molecules have shown the potential to be used as electronic components such as diode and memory elements. Here, we demonstrate that using simple surface chemistry, rectification characteristics can be tuned to reproducible negative differential resistance (NDR) with a very high peak-to-valley ratio (PVR) up to 1000 in 2,6-diethyl-4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indecene (BODIPY) grafted on Si. The change in properties is related to oxidation and reduction of BODIPY, which results in the change in resonant to non-resonant tunneling of electrons under bias. This has been explained by the ab initio molecular-orbital theoretical calculations.

17.
J Neurosci ; 38(38): 8233-8242, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30093535

RESUMO

Mitochondrial fission and fusion impact numerous cellular functions and neurons are particularly sensitive to perturbations in mitochondrial dynamics. Here we describe that male mice lacking the mitochondrial A-kinase anchoring protein 1 (AKAP1) exhibit increased sensitivity in the transient middle cerebral artery occlusion model of focal ischemia. At the ultrastructural level, AKAP1-/- mice have smaller mitochondria and increased contacts between mitochondria and the endoplasmic reticulum in the brain. Mechanistically, deletion of AKAP1 dysregulates complex II of the electron transport chain, increases superoxide production, and impairs Ca2+ homeostasis in neurons subjected to excitotoxic glutamate. Ca2+ deregulation in neurons lacking AKAP1 can be attributed to loss of inhibitory phosphorylation of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1) at the protein kinase A (PKA) site Ser637. Our results indicate that inhibition of Drp1-dependent mitochondrial fission by the outer mitochondrial AKAP1/PKA complex protects neurons from ischemic stroke by maintaining respiratory chain activity, inhibiting superoxide production, and delaying Ca2+ deregulation. They also provide the first genetic evidence that Drp1 inhibition may be of therapeutic relevance for the treatment of stroke and neurodegeneration.SIGNIFICANCE STATEMENT Previous work suggests that activation of dynamin-related protein 1 (Drp1) and mitochondrial fission contribute to ischemic injury in the brain. However, the specificity and efficacy of the pharmacological Drp1 inhibitor mdivi-1 that was used has now been discredited by several high-profile studies. Our report is timely and highly impactful because it provides the first evidence that genetic disinhibition of Drp1 via knock-out of the mitochondrial protein kinase A (PKA) scaffold AKAP1 exacerbates stroke injury in mice. Mechanistically, we show that electron transport deficiency, increased superoxide production, and Ca2+ overload result from genetic disinhibition of Drp1. In summary, our work settles current controversies regarding the role of mitochondrial fission in neuronal injury, provides mechanisms, and suggests that fission inhibitors hold promise as future therapeutic agents.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Isquemia Encefálica/metabolismo , Dinaminas/metabolismo , Dinâmica Mitocondrial/fisiologia , Acidente Vascular Cerebral/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Isquemia Encefálica/genética , Cálcio/metabolismo , Dinaminas/genética , Complexo II de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Neurônios/ultraestrutura , Fosforilação , Acidente Vascular Cerebral/genética , Superóxidos/metabolismo
18.
Stroke ; 50(5): 1201-1209, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30909835

RESUMO

Background and Purpose- Cellular Fn-EDA (fibronectin containing extra domain A) is expressed in activated endothelial cells and elevated in circulation in patients with cardiovascular diseases. Although global deficiency of Fn-EDA in mice improves stroke outcome, the specific contribution of plasma versus endothelium Fn-EDA in stroke outcome is currently unknown. We investigated the role of plasma versus endothelial Fn-EDA in stroke exacerbation in the comorbid condition of hyperlipidemia. Methods- We generated novel plasma Fn-EDA-/- ( Fn-EDA fl/fl Alb Cre) and endothelial Fn-EDA-/- ( Fn-EDA fl/fl Tie2 Cre) strains on hyperlipidemic apolipoprotein E-deficient ( ApoE-/-) background. By following the Stroke Therapy Academic Industry Roundtable guidelines, we evaluated stroke outcome in male and female mice. Susceptibility to ischemia/reperfusion injury was evaluated in 2 different models of stroke: intraluminal monofilament and embolic model on days 1, 3, and 7. Quantitative assessment of stroke outcome was evaluated by measuring infarct volume (by magnetic resonance imaging), cerebral blood flow (by laser speckle imaging), neurological and sensory-motor outcome, and postischemic thrombo-inflammation (platelet thrombi, fibrin, neutrophil, phospho-NFκB [nuclear factor κB], TNFα [tumor necrosis factor α], and IL1ß [interleukin 1ß]). Results- Stroke outcome was comparable in ApoE-/- Fn-EDA fl/fl Tie2 Cre and control ApoE-/- Fn-EDA fl/fl mice suggesting endothelial Fn-EDA does not contribute to stroke. ApoE-/- Fn-EDA fl/fl Alb Cre mice exhibited significantly smaller infarcts and improved neurological and sensory-motor outcome at days 1, 3, and 7 in monofilament and embolic models of stroke. Improved stroke outcome was concomitant with enhanced survival, and decreased postischemic thrombo-inflammatory response ( P<0.05 versus ApoE-/- Fn-EDA fl/fl). No sex-based differences were observed. Laser speckle imaging revealed significantly improved regional cerebral blood flow at 1 hour in ApoE-/- Fn-EDA fl/fl Alb Cre mice suggesting plasma Fn-EDA promotes postischemic secondary thrombosis. Coinfusion of anti-Fn-EDA antibody with r-tPA (recombinant tissue-type plasminogen activator) in ApoE-/- mice, 1 hour after embolization, improved stroke outcome with enhanced survival, and improved neurological outcome ( P<0.05 versus r-tPA). Conclusions- Genetic evidence suggests that plasma Fn-EDA exacerbates stroke outcome by promoting postischemic thrombo-inflammation. Interventions targeting plasma Fn-EDA may reduce brain damage after reperfusion.


Assuntos
Células Endoteliais/metabolismo , Fibronectinas/sangue , Acidente Vascular Cerebral/sangue , Trombose/sangue , Animais , Biomarcadores/sangue , Células Endoteliais/patologia , Feminino , Inflamação/sangue , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Acidente Vascular Cerebral/patologia , Trombose/patologia
19.
Arterioscler Thromb Vasc Biol ; 38(3): 500-508, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29326316

RESUMO

OBJECTIVE: Fibronectin containing extra domain A (Fn-EDA) is an endogenous ligand of TLR4 (toll-like receptor 4) and is abundant in the extracellular matrix of advanced atherosclerotic lesions in human and mice. Irrespective of sex, deletion of Fn-EDA reduces early atherosclerosis in apolipoprotein E-deficient (Apoe-/-) mice. However, the contribution of Fn-EDA in advanced atherosclerosis remains poorly characterized. We determined the contribution of Fn-EDA in advanced atherosclerotic lesions of aged (1-year-old) Apoe-/- mice. APPROACH AND RESULTS: Plaque composition was determined in the innominate artery, a plaque instability site that is known to mimic several histological features of vulnerable human plaques. Female Apoe-/-, Fn-EDA-/-Apoe-/-, TLR4-/-Apoe-/-, and Fn-EDA-/-TLR4-/-Apoe-/- mice were fed a high-fat Western diet for 44 weeks. Fn-EDA-/-Apoe-/- mice exhibited reduced plaque size characterized by smaller necrotic cores, thick fibrous caps containing abundant vascular smooth muscle cells and collagen, reduced CD68/MMP9 (matrix metalloproteinase 9)-positive content, less accumulation of MMP-cleaved extracellular matrix aggrecan, and decreased vascular smooth muscle cell and macrophage apoptosis (P<0.05 versus Apoe-/- mice). Together these findings suggest that Fn-EDA induces plaque destabilization. Deletion of TLR4 reduced histological features of plaque instability in Apoe-/- mice but did not further reduce features of plaque destabilization in Fn-EDA-/-Apoe-/- mice, suggesting that TLR4 may contribute to Fn-EDA-induced plaque destabilization. Fn-EDA potentiated TLR4-dependent MMP9 expression in bone marrow-derived macrophages, suggesting that macrophage TLR4 may contribute to Fn-EDA-mediated plaque instability. CONCLUSIONS: Fn-EDA induces histological features of plaque instability in established lesions of aged Apoe-/- mice. The abundance of Fn-EDA in advanced atherosclerotic lesions may increase the risk of plaque destabilization.


Assuntos
Aterosclerose/metabolismo , Tronco Braquiocefálico/metabolismo , Fibronectinas/metabolismo , Placa Aterosclerótica , Fatores Etários , Envelhecimento , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apoptose , Aterosclerose/genética , Aterosclerose/patologia , Tronco Braquiocefálico/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibronectinas/deficiência , Fibronectinas/genética , Fibrose , Macrófagos/metabolismo , Macrófagos/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Necrose , Ruptura Espontânea , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
20.
Arterioscler Thromb Vasc Biol ; 38(3): 520-528, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29348121

RESUMO

OBJECTIVE: VWF (von Willebrand factor) is synthesized by endothelial cells and megakaryocytes and is known to contribute to atherosclerosis. In vitro studies suggest that platelet-derived VWF (Plt-VWF) is biochemically and functionally different from endothelial cell-derived VWF (EC-VWF). We determined the role of different pools of VWF in the pathophysiology of atherosclerosis. APPROACH AND RESULTS: Using bone marrow transplantation, we generated chimeric Plt-VWF, EC-VWF, and Plt-VWF mice lacking a disintegrin and metalloprotease with thrombospondin type I repeats-13 in platelets and plasma on apolipoprotein E-deficient (Apoe-/-) background. Controls were chimeric Apoe-/- mice transplanted with bone marrow from Apoe-/- mice (wild type) and Vwf-/-Apoe-/- mice transplanted with bone marrow from Vwf-/-Apoe-/- mice (VWF-knock out). Susceptibility to atherosclerosis was evaluated in whole aortae and cross-sections of the aortic sinus in female mice fed a high-fat Western diet for 14 weeks. VWF-knock out, Plt-VWF, and Plt-VWF mice lacking a disintegrin and metalloprotease with thrombospondin type I repeats-13 exhibited reduced plaque size characterized by smaller necrotic cores, reduced neutrophil and monocytes/macrophages content, decreased MMP9 (matrix metalloproteinase), MMP2, and CX3CL1 (chemokine [C-X3-C motif] ligand 1)-positive area, and abundant interstitial collagen (P<0.05 versus wild-type or EC-VWF mice). Atherosclerotic lesion size and composition were comparable between wild-type or EC-VWF mice. Together these findings suggest that EC-VWF, but not Plt-VWF, promotes atherosclerosis exacerbation. Furthermore, intravital microscopy experiments revealed that EC-VWF, but not Plt-VWF, contributes to platelet and leukocyte adhesion under inflammatory conditions at the arterial shear rate. CONCLUSIONS: EC-VWF, but not Plt-VWF, contributes to VWF-dependent atherosclerosis by promoting platelet adhesion and vascular inflammation. Plt-VWF even in the absence of a disintegrin and metalloprotease with thrombospondin type I repeats-13, both in platelet and plasma, was not sufficient to promote atherosclerosis.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Doenças de von Willebrand/metabolismo , Fator de von Willebrand/metabolismo , Proteína ADAMTS13/genética , Proteína ADAMTS13/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/sangue , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Plaquetas/metabolismo , Transplante de Medula Óssea , Adesão Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Leucócitos/metabolismo , Leucócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Placa Aterosclerótica , Adesividade Plaquetária , Seio Aórtico/metabolismo , Seio Aórtico/patologia , Doenças de von Willebrand/sangue , Doenças de von Willebrand/genética , Fator de von Willebrand/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA