Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Conserv Biol ; 35(1): 216-226, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32812277

RESUMO

Invasive species have major impacts on biodiversity and are one of the primary causes of amphibian decline and extinction. Unlike other top ant invaders that negatively affect larger fauna via chemical defensive compounds, the Argentine ant (Linepithema humile) does not have a functional sting. Nonetheless, it deploys defensive compounds against competitors and adversaries. We estimated levels of ant aggression toward 3 native terrestrial amphibians by challenging juveniles in field ant trails and in lab ant foraging arenas. We measured the composition and quantities of toxin in L. humile by analyzing pygidial glands and whole-body contents. We examined the mechanisms of toxicity in juvenile amphibians by quantifying the toxin in amphibian tissues, searching for histological damages, and calculating toxic doses for each amphibian species. To determine the potential scope of the threat to amphibians, we used global databases to estimate the number, ranges, and conservation status of terrestrial amphibian species with ranges that overlap those of L. humile. Juvenile amphibians co-occurring spatially and temporally with L. humile die when they encounter L. humile on an ant trail. In the lab, when a juvenile amphibian came in contact with L. humile the ants reacted quickly to spray pygidial-gland venom onto the juveniles. Iridomyrmecin was the toxic compound in the spray. Following absorption, it accumulated in brain, kidney, and liver tissue. Toxic dose for amphibian was species dependent. Worldwide, an estimated 817 terrestrial amphibian species overlap in range with L. humile, and 6.2% of them are classified as threatened. Our findings highlight the high potential of L. humile venom to negatively affect amphibian juveniles and provide a basis for exploring the largely overlooked impacts this ant has in its wide invasive range.


Efectos del Veneno de la Hormiga Argentina sobre los Anfibios Terrestres Resumen Las especies invasoras tienen un impacto importante sobre la biodiversidad y son una de las causas principales del declive y extinción de los anfibios. A diferencia de otras hormigas super-invasoras que afectan negativamente a animales más grandes por medio de compuestos químicos de defensa, la hormiga argentina (Linepithema humile) no tiene unaguijón funcional. Sin embargo, esta hormiga despliega compuestos defensivos contra sus competidores y adversarios. Estimamos los niveles de agresión de las hormigas hacia tres anfibios terrestres nativos exponiendo a los anfibios juveniles en pistas de hormigas en el campo y en las arenas de forrajeo de las hormigas en el laboratorio. Medimos la composición y las cantidades de toxina que presenta L. humile por medio del análisis de las glándulas pigidiales y el contenido en el cuerpo completo. Examinamos los mecanismos de la toxicidad en los anfibios juveniles cuantificando la toxina en el tejido del anfibio, buscando daños histológicos y calculando las dosis tóxicas para cada especie de anfibio. Para determinar el alcance potencial de la amenaza para los anfibios usamos bases de datos mundiales para estimar el número, distribución y estado de conservación de las especies terrestres de anfibios con distribuciones que se solapan con la de L. humile. Los anfibios juveniles que co-ocurren temporal y espacialmente con L. humile mueren al encontrarse con esta especie de hormiga en sus pistas. En el laboratorio, cuando un anfibio juvenil entró en contacto con L. humile, las hormigas reaccionaron rápidamente rociando a estos juveniles con veneno proveniente de las glándulas pigidiales. La iridomyrmecina fue el compuesto tóxico que encontramos en las glándulas pigidiales. Después de ser absorbida por la piel del anfibio, se acumuló en el cerebro, los riñones y el hígado. La dosis tóxica para los anfibios depende de la especie. A nivel mundial, se estima que 817 especies de anfibios terrestres tienen una distribución que se solapa con la de L. humile, y el 6.2% de estas especies se encuentran clasificadas como amenazadas. Nuestros hallazgos resaltan el potencial alto del veneno de L. humile para tener efectos negativos sobre los anfibios juveniles y también proporcionan una base para la exploración de los impactos de esta hormiga en su amplio rango invasivo, los cuales generalmente son ignorados.


Assuntos
Venenos de Formiga , Formigas , Anfíbios , Animais , Comportamento Animal , Conservação dos Recursos Naturais
2.
Proc Natl Acad Sci U S A ; 115(4): 714-719, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311316

RESUMO

Pheromones and other semiochemicals play a crucial role in today's integrated pest and vector management strategies. These semiochemicals are typically discovered by bioassay-guided approaches. Here, we applied a reverse chemical ecology approach; that is, we used olfactory proteins to lead us to putative semiochemicals. Specifically, we used 7 of the top 10 odorant receptors (ORs) most expressed in the antennae of the southern house mosquito, Culex quinquefasciatus, and which are yet to be deorphanized. We expressed these receptors in the Xenopus oocyte recording system and challenged them with a panel of 230 odorants, including physiologically and behaviorally active compounds. Six of the ORs were silent either because they are not functional or a key odorant was missing. CquiOR36, which showed the highest transcript levels of all OR genes in female antennae, was also silent to all odorants in the tested panel, but yielded robust responses when it was accidentally challenged with an old sample of nonanal in ethanol. After confirming that fresh samples were inactive and through a careful investigation of all possible "contaminants" in the old nonanal samples, we identified the active ligand as acetaldehyde. That acetaldehyde is activating CquiOR36 was further confirmed by electroantennogram recordings from antennae of fruit flies engineered to carry CquiOR36. Antennae of female mosquitoes also responded to acetaldehyde. Cage oviposition and dual-choice assays demonstrated that acetaldehyde is an oviposition attractant in a wide range of concentrations and thus of potential practical applications.


Assuntos
Acetaldeído/metabolismo , Culex/fisiologia , Receptores Odorantes/metabolismo , Acetaldeído/química , Animais , Culex/genética , Culicidae/metabolismo , Ecologia , Feminino , Mosquitos Vetores/metabolismo , Odorantes , Oviposição/fisiologia , Feromônios/metabolismo , Feromônios/fisiologia , Receptores Odorantes/genética , Olfato
3.
J Nematol ; 50(2): 147-162, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30451435

RESUMO

Vetiver, a nonhost grass for certain nematodes, was studied for the production of compounds active against the southern root-knot nematode, Meloidogyne incognita . In laboratory assays studying the effects on second-stage juvenile (J2) activity and viability, crude vetiver root and shoot extracts were nematotoxic, resulting in 40% to 70% J2 mortality, and were also repellent to J2. Vetiver oil did not exhibit activity against J2 in these assays. Gas chromatography-mass spectrometry analyses of three crude vetiver root ethanol extracts and a commercial vetiver oil determined that two of the major components in each sample were the sesquiterpene acid 3,3,8,8-tetramethyltricyclo[5.1.0.0(2,4)]oct-5-ene-5-propanoic acid and the sesquiterpene alcohol 6-isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalen-2-ol. The acid was present in higher amounts in the extracts than in the oil. These studies demonstrating nematotoxicity and repellency of vetiver-derived compounds to M. incognita suggest that plant chemistry plays a role in the nonhost status of vetiver to root-knot nematodes, and that the chemical constituents of vetiver may be useful for suppressing nematode populations in the soil.

4.
J Chem Ecol ; 40(11-12): 1260-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25408429

RESUMO

Preparation of a complete stereoisomeric library of 1,10-bisaboladien-3-ols and selected 10,11-epoxy-1-bisabolen-3-ols was pivotal for the identification of the aggregation pheromone of the brown marmorated stink bug, Halyomorpha halys. Herein, we describe syntheses of the remaining 10,11-epoxy-1-bisabolen-3-ols, and provide additional evidence on the assignment of relative and absolute configurations of these compounds by single-crystal X-ray crystallography of an intermediate, (3S,6R,7R,10S)-1-bisabolen-3,10,11-triol. To demonstrate the utility of this stereoisomeric library, we revisited the aggregation pheromone of the harlequin bug, Murgantia histrionica, and showed that the male-produced pheromone consists of two stereoisomers of 10,11-epoxy-1-bisabolen-3-ol. Employment of eight cis-10,11-epoxy-1-bisabolen-3-ol stereoisomeric standards, two enantioselective GC columns, and NMR spectroscopy enabled the identification of these compounds as (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol and (3S,6S,7R,10R)-10,11-epoxy-1-bisabolen-3-ol, which are produced by M. histrionica males in 1.4:1 ratio.


Assuntos
Quimiotaxia , Heterópteros/fisiologia , Feromônios/metabolismo , Animais , Cromatografia Gasosa , Cristalografia por Raios X , Heterópteros/crescimento & desenvolvimento , Masculino , Estereoisomerismo
5.
Z Naturforsch C J Biosci ; 68(11-12): 522-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24601090

RESUMO

Wheel bugs (Heteroptera: Reduviidae: Harpactorinae: Arilus) are general predators, the females of which have reddish-orange subrectal glands (SGs) that are eversible like the osmeteria in some caterpillars. The rancid odor of Arilus and other reduviids actually comes from Brindley's glands, which in the North (A. cristatus) and South (A. carinatus) American wheel bugs studied emit similar blends of 2-methylpropanoic, butanoic, 3-methylbutanoic, and 2-methylbutanoic acids. The Arilus SG secretions studied here are absolutely species-specific. The volatile SG components of A. carinatus include (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal, (E,E)-2,4-nonadienal, (E)-2-undecenal, hexanoic acid, 4-oxo-nonanal, (E,E)-2,4-decadienal, (E,Z)-2,4- or (Z,E)-2,4-decadienal, and 4-oxo-(E)-2-nonenal; whereas in A. cristatus the SG secretion contains beta-pinene, limonene, terpinolene, terpinen-4-ol, thymol methyl ether, alpha-terpineol, bornyl acetate, methyl eugenol, beta-caryophyllene, caryophyllene oxide, and farnesol. Arilus spp. SG secretions may be sex pheromones, but verification of this hypothesis requires further testing.


Assuntos
Heterópteros/metabolismo , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas
6.
Micromachines (Basel) ; 14(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37763951

RESUMO

Magnetron sputtering was used for producing titanium vanadium nitride (TiVN) coatings on brass substrates. In this research, we investigate how changing the sputtering power and nitrogen:argon (N2:Ar) gas ratio affects the structural and tribological properties of TiVN coatings. A scanning electron microscope (SEM) was used to examine TiVN coating surface morphology. Both variants showed a gradual increase in the intensity of the TiVN coatings' (111) and (222) peaks. The TiVN coatings' tribological properties were examined using a pin-on-disc tribometer with varying loads, speeds, and sliding distances. The wear rates of TiVN-coated brass pins were in the range of 2.5 × 10-4 to 9.14 × 10-4 mm3/Nm depending on load, sliding distance, and gas ratio variation, when compared to the wear rates of TiVN-coated brass pins deposited at various powers, which ranged from 1.76 × 10-3 to 5.87 × 10-3 mm3/Nm.

7.
Environ Technol ; 44(5): 619-630, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34516346

RESUMO

The biodegradation of low-density Polyethylene (LDPE) is usually time-consuming, In the presence of Titania-nanoparticles, LDPE is photocatalytically degraded in smaller fragments afterward the bacteria can effectively degrade polyethylene. In the current study, potent polyethylene degrading bacteria were screened from the soil of the local dumpsite and identified using 16s rRNA sequencing. The protein-coated titania nanoparticle (TNPs) was synthesized using Sol-gel Method and characterized by XRD, and SAED-HRTEM. The photocatalytic biodegradation of LDPE (30 microns) in presence of 1M NaOH was studied by exposing it to UV irradiation, visible light, and high temperature (50°C) for 21 days separately and photocatalytic biodegradation was assessed by monitoring % weight loss at every 7 days' time interval, tensile strength, and FTIR. After 21 days of photocatalytic biodegradation, LDPE film containing both TNPs and Lactobacillus plantarum along with 1M NaOH in presence of visible light was unveiled oxidation and enumerated via the occurrence of strong absorptions band of the carbonyl group (C=O) and also the breaking and weakening of existing absorptions bonds along with the new carbonyl functional group formation. The decline in tensile strength was measured at 21% after 21 days. Thus, experimental results on LDPE after exposure to visible irradiation along with Lactobacillus plantarum and 5% protein-coated TNP showed improvement in degradation rate and elongation 59 % and 51% within 21 days, respectively in comparison to another study (49 % Weight loss and 12% elongation after 45 days). An excellent application of this research is significantly reduced plastic waste via a maintained procedure.


Assuntos
Lactobacillus plantarum , Nanopartículas , Polietileno/química , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , RNA Ribossômico 16S/genética , Hidróxido de Sódio , Bactérias/metabolismo , Biodegradação Ambiental
8.
Polymers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447431

RESUMO

This manuscript presents an experimental investigation of the friction and wear properties of poly (methyl methacrylate) (PMMA) nanocomposites reinforced with functionalized multi-walled carbon nanotubes (MWCNTs). The aim of this study is to evaluate the potential of MWCNTs as a reinforcement material for enhancing the tribological performance of PMMA. Three types of multi-walled carbon nanotubes, i.e., pristine, hydroxyl functionalized, and carboxyl functionalized, were utilized in this study. The nanocomposite samples were prepared by dispersing varying concentrations of MWCNTs (0.1 wt.%, 0.5 wt.%, and 1 wt.%) within the PMMA matrix via a 3D mixing approach, followed by injection molding/compression molding. The resulting nanocomposite films were characterized using scanning electron microscopy (SEM) to observe the dispersion of MWCNTs within the PMMA matrix. The friction and wear tests were conducted using a pin-on-disk tribometer under dry sliding conditions. The effects of functionalization and MWCNT content on the tribological behaviors of the nanocomposites were analyzed. The nanocomposites exhibited lower friction coefficients and reduced wear rates compared to pure PMMA. The lowest friction coefficient and wear rate were achieved at an optimum MWCNT loading of 0.5 wt.%. It was further revealed that the amount of MWCNT reinforcement, average load, and track diameter significantly affect the coefficient of friction (COF) and rate of wear. The COF and wear rate are best at a filler loading of 0.5 wt.%, a 20 Kg load, and 90 mm. The improved tribological performance of the MWCNT-reinforced PMMA nanocomposites can be attributed to the effective transfer of load between the MWCNTs and the PMMA matrix, as well as the reinforcement effect of the MWCNTs. The MWCNTs acted as reinforcing agents, enhancing the mechanical properties and wear resistance of the nanocomposites.

9.
Materials (Basel) ; 15(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36295359

RESUMO

The objective of the study was to check the feasibility of machining Stellite 6, a cobalt-chromium superalloy, using TiN-coated carbide inserts in an end milling operation. The inserts were coated using the magnetron sputtering process. The sputtering power and gas flow rate were considered as the variables during the coating process. The performance of the coated binary carbide insert was checked during the end milling of Stellite 6 (~45 HRC) through an experiment with a Taguchi design. Experimental runs based on an orthogonal array were executed for each insert type to check the feasibility of machining this cobalt-based alloy. Adequate precision and the optimum parametric conditions were determined and are reported in this study. Analysis of variance (ANOVA) with a two-factor interaction model was also undertaken to forecast the key elements influencing surface roughness. Based on the ANOVA model, the depth of the cut, combined with the insert type, was the factor that had the greatest influence on surface roughness, followed by the cutting feed, whereas the cutting velocity had the least significance based on the tests. Moreover, the regression analysis demonstrated that the created model can be used to accurately forecast surface roughness in end milling of Stellite 6 with confidence intervals of 95%.

10.
J Med Entomol ; 58(6): 2479-2483, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33855440

RESUMO

Hand sanitizers are developed as alcohol-based liquid gel formulations, generally used to decrease the amount of infectious agents on human hands. Verdegen, LLC proposed to prepare an arthropod repellent gel for public use when the recent outbreaks of Zika infection vectored through Aedes mosquitoes in the American continents prompted multi-faceted emergency measures. Four different gel formulations were developed, comprising two of the most efficacious commercial arthropod repellent active ingredients, N,N-diethyl-3-methyl benzamide (deet) and 2-(2-hydroxyethyl)-1-piperidinecarboxylic acid 1-methylpropyl ester (picaridin), each at different concentrations (20 and 33% deet, or 20 and 33% picaridin). Compliance with the use of topical arthropod repellents remains an issue among military personnel. One of the most common complaints by Soldiers is that they do not like how the repellents applied on their skin leave behind an oily or greasy residue. These new gel formulations offer a user-friendly alternative for commonly used arthropod repellents formulations for the military and civilian personnel. We tested the efficacy and protection time of these new gel formulations in comparison with the commercially available cream formulations of deet and picaridin at similar concentrations. Our data show that gel formulations have better topical attributes, and offer equal or better biting protection for up to 48 h against host-seeking Aedes aegypti (L.) (Diptera: Culicidae) female mosquitoes.


Assuntos
Aedes , DEET , Géis , Repelentes de Insetos , Piperidinas , Animais , Relação Dose-Resposta a Droga , Feminino , Géis/química , Repelentes de Insetos/química
11.
J Med Entomol ; 47(2): 199-204, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20380300

RESUMO

Compounds thought to be effective against mosquitoes as either 'insecticides' or 'repellents' have recently been shown to contain properties of both, or possess other behavior-modifying actions. Prompted in part by these reports, we conducted posterior analyses of our data to examine some interrelated statistical issues inherent in our bioassay system. Using a modified K&D module, the responses of over 25,000 adult Aedes aegypti (L.) females exposed to either alphacypermethrin or DEET were compared with the responses of mosquitoes exposed to untreated controls for toxicity and biting (alphacypermethrin) or biting alone (DEET). Our analyses indicated that; (1) our bioassay system has more statistical power to determine a compound's toxicity than its repellent qualities, (2) day-to-day variability is large and needs to be accommodated in analyses; there are other, potentially even larger sources of variability (e.g., mosquito heterogeneity) which invalidate statistical tests that are based on the assumption of binomially or multinomially distributed data (e.g., chi2 tests), and (3) unlike biting mosquitoes exposed to DEET, the proportions of biting mosquitoes exposed to alphacypermethrin are unrelated to the proportions of concurrently tested biting controls, even after adjusting for daily variation in toxicity. Thus, there is a clear behavioral indicator in this bioassay system that the 'repellency' of DEET (a presumed repellent) differs in a fundamental way from that of alphacypermethrin (a presumed toxicant), which may allow the differentiation between classes of compounds based on biting behavior alone.


Assuntos
Aedes/efeitos dos fármacos , Aedes/fisiologia , DEET/farmacologia , Comportamento Alimentar/fisiologia , Mordeduras e Picadas de Insetos/prevenção & controle , Piretrinas/farmacologia , Animais , Feminino , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia
12.
J Med Entomol ; 47(2): 140-3, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20380293

RESUMO

Analyses of the dorsal abdominal glands of fourth- and fifth-instar nymphs of the bed bud, Cimex lectularius L. (Hemiptera: Cimicidae), indicated the predominant constituents were (E)-2-hexenal and (E)-2-octenal, with lesser amounts of 4-oxo-(E)-2-hexenal and 4-oxo-(E)-2-octenal. The latter two compounds have not been reported previously as occurring in bed bugs. There were no differences in the chemical composition of the dorsal abdominal glands excised from exuviae left behind by either male or female adults, nor from glands excised from fourth-instar exuviae. Because the two oxo-aldehydes made up at least 16% of the gland contents, further study of the functional role of these chemicals seem advisable.


Assuntos
Aldeídos/química , Percevejos-de-Cama/química , Animais , Feminino , Larva/química , Masculino
13.
J Med Entomol ; 47(5): 833-41, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20939378

RESUMO

Chemicals can protect humans from the bites of hemophagous arthropods through three different primary actions: irritancy (excitation), repellency, or toxicity, actions that can be evaluated using a laboratory-based assay system. In this study, the deterrent and toxic actions of three synthetic pyrethroids and DDT were characterized on six field strains of Aedes aegypti from Thailand under laboratory-controlled conditions using the high throughput screening system. All six strains showed significant contact irritant responses to the three synthetic pyrethroids, but significantly weaker irritant responses to DDT. Marked repellency responses were seen in all six Ae. aegypti test strains exposed to DDT, whereas the synthetic pyrethroids resulted in greater toxicity than DDT under similar test conditions. Although significantly different in actions, irritancy and repellency may reflect and be influenced by the background insecticide susceptibility status of a particular mosquito population. Results from this study can be used to guide decision making regarding more effective Ae. aegypti adult control in Thailand.


Assuntos
Aedes/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Animais , Demografia , Tailândia
14.
J Phys Chem Lett ; 11(3): 591-600, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31887041

RESUMO

The ambient stability, hysteresis, and trap states in organo-halide perovskite solar cells (PSCs) are correlated to the influence of interlayer interfaces and grain boundaries. Astute incorporation of Cu2ZnSnS4 (CZTS) and Au/CZTS core/shell nanocrystals (NCs) can realize the goal of simultaneously achieving better performance and ambient stability of the PSCs. With optimized Au/CZTS NC size and concentration in the photoactive layer, power conversion efficiency can be increased up to 19.97 ± 0.6% with ambient air stability >800 h, as compared to 14.46 ± 1.02% for the unmodified devices. Through efficient carrier generation by CZTS and perovskite, accompanied by the plasmonic effect of Au, carrier density is sufficiently increased as validated by transient absorption spectroscopy. NCs facilitate the interfacial charge transfer by suitable band alignment and removal of recombination centers such as metallic Pb0, surface defects, or impurity sites. NC embedding also increases the perovskite grain size and assists in pinhole filling, reducing the trap state density.

15.
J Chem Ecol ; 35(10): 1181-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19844760

RESUMO

Adult chrysopids have paired prothoracic glands (PG) that are thought to produce defensive secretions (allomones). We analyzed PG extracts of the following green lacewings from North and South America, Australia, and China: Ceraeochrysa cubana (Brazil); Chrysopa (= Co.) oculata, Co. nigricornis, Co. incompleta, Co. quadripunctata (USA), and Co. septempunctata (China); Chrysoperla (= Cl.) rufilabris (USA) and Cl. sp. (Brazil); Plesiochrysa ramburi and Mallada spp. (Australia). PG secretions are characteristic for species within a genus, except for Chrysopa spp. (Z)-4-Tridecene is ubiquitous, but (Z,Z)-4,7-tridecadiene is a major PG constituent in some Chrysopa spp. and in P. ramburi. Earlier reports that Co. oculata and Co. nigricornis produce 1-tridecene were shown to be in error. Chrysopa PG secretions are distinguished by the presence or absence of N-3-methylbutylacetamide, plus skatole (3-methylindole). Skatole is also identified for the first time from the Plesiochrysa and Ceraeochrysa. The PG secretion in Plesiochrysa ramburi is characterized by the presence of (Z)-4-undecene instead of (Z)-4-tridecene, and N-3-methylbutylpropanamide instead of the acetamide, resembling the PG secretions of Chrysopa nigricornis, Co. septempunctata and Co. incompleta. The chemotaxonomic value of PG semiochemicals is discussed, including evidence for subgroups within the genus Chrysopa as it now stands.


Assuntos
Artrópodes/química , Glândulas Endócrinas/química , Glândulas Endócrinas/metabolismo , Feromônios/análise , Feromônios/metabolismo , Animais , Artrópodes/classificação , Artrópodes/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Filogenia
16.
J Am Mosq Control Assoc ; 25(2): 156-67, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19653497

RESUMO

A previously described modular high-throughput screening system was used to characterize the spatial repellent, contact irritant, and toxicant chemical actions of 14 compounds historically used or under investigation for vector control. The response of F1-F4 Aedes aegypti (Thailand strain) to various concentrations of 4 organochlorines (chlordane, DDT, dieldrin, methoxychlor); 4 pyrethroids (alphacypermethrin, cypermethrin, deltamethrin, permethrin); 3 organophosphates (chlorpyrophos methyl, fenitrothion, malathion); 2 carbamates (bendiocarb, propoxur); and 1 pyrazole (chlorfenapyr) were evaluated. Results show chemicals exert different combinations of contact irritant, spatial repellent, and toxic actions. This is true even within the same chemical class. These actions can be ordered for each chemical based on the testing dose at which the specific response is elicited. Data also indicate that behavioral responses to spatial repellent and contact irritant actions are separate (or independent) from the toxic action of a compound. Results from pyrethroid and DDT assays also show chemicals can induce behavior-modifying actions, such as contact irritancy and spatial repellency, which will reduce man-vector contact, despite evidence of insecticide resistance within the test population. These findings support previous laboratory and field studies showing man-vector contact and disease transmission are routinely interrupted by spatial repellent and contact irritant actions of common public health insecticides. Studies similar to that presented here can be used as baseline evidence for expected vector responses and support best approaches for more detailed behavioral research.


Assuntos
Aedes/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Inseticidas/farmacologia , Controle de Mosquitos , Animais
17.
Chem Sci ; 10(41): 9530-9541, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055324

RESUMO

In spite of achieving high power conversion efficiency (PCE), organo-halide perovskites suffer from long term stability issues. Especially the grain boundaries of polycrystalline perovskite films are considered as giant trapping sites for photo-generated carriers and therefore play an important role in charge transportation dynamics. Surface engineering via grain boundary modification is the most promising way to resolve this issue. A unique antisolvent-cum-quantum dot (QD) assisted grain boundary modification approach has been employed for creating monolithically grained, pin-hole free perovskite films, wherein the choice of all-inorganic CsPbBr x I3-x (x = 1-2) QDs is significant. The grain boundary filling by QDs facilitates the formation of compact films with 1-2 µm perovskite grains as compared to 300-500 nm grains in the unmodified films. The solar cells fabricated by CsPbBr1.5I1.5 QD modification yield a PCE of ∼16.5% as compared to ∼13% for the unmodified devices. X-ray photoelectron spectral analyses reveal that the sharing of electrons between the PbI6 - framework in the bulk perovskite and Br- ions in CsPbBr1.5I1.5 QDs facilitates the charge transfer process while femtosecond transient absorption spectroscopy (fs-TAS) suggests quicker trap filling and enhanced charge carrier recombination lifetime. Considerable ambient stability up to ∼720 h with <20% PCE degradation firmly establishes the strategic QD modification of bulk perovskite films.

18.
J Am Mosq Control Assoc ; 24(4): 513-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19181058

RESUMO

An investigation of the biological effect of catnip oil (Nepeta cataria L.) on the behavioral response of field collected Aedes aegypti and Anopheles harrisoni was conducted using an automated excitorepellency test system. Aedes aegypti showed significantly higher escape rates from the contact chamber at 5% catnip oil compared to other concentrations (P < 0.05). With Anopheles harrisoni, a high escape response was seen at 2.5% catnip oil from the contact chamber, while in the noncontact chamber a higher escape response was observed at a concentration of 5%. Results showed that this compound exhibits both irritant and repellent actions.


Assuntos
Aedes/efeitos dos fármacos , Anopheles/efeitos dos fármacos , Repelentes de Insetos/farmacologia , Nepeta/química , Óleos de Plantas/farmacologia , Animais , Relação Dose-Resposta a Droga , Reação de Fuga/efeitos dos fármacos , Feminino , Controle de Mosquitos , Óleos de Plantas/isolamento & purificação , Tailândia
19.
Sci Rep ; 8(1): 1477, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367727

RESUMO

The invasive Argentine ant (Linepithema humile) has become established worldwide in regions with Mediterranean or subtropical climates. The species typically disrupts the balance of natural ecosystems by competitively displacing some native ant species via strong exploitation and interference competition. Here we report that Argentine ants utilize glandular secretions for inter and intra-specific communications during aggressive interactions with a heterospecific competitor, California harvester ant (Pogonomyrmex californicus). Chemical analyses indicated that Argentine ants deploy glandular secretions containing two major volatile iridoids, dolichodial and iridomyrmecin, on the competitor's cuticular surface during aggressive interactions. Bioassays indicated that the glandular secretions function as a defensive allomone, causing high levels of irritation in the heterospecific. Furthermore, the same glandular secretions elicited alarm and attraction of conspecific nestmates, potentially enabling more rapid/coordinated defense by the Argentine ants. Two major volatile constituents of the glandular secretion, dolichodial and iridomyrmecin, were sufficient to elicit these responses in conspecifics (as a mixture or individual compounds). The current study suggests that invasive Argentine ants' superior exploitation and interference competition may rely on the species' effective semiochemical parsimony.


Assuntos
Agressão/fisiologia , Formigas/fisiologia , Comportamento Animal/fisiologia , Comportamento Competitivo , Inseticidas/farmacologia , Comportamento de Nidação/fisiologia , Feromônios , Animais , Formigas/classificação , Formigas/efeitos dos fármacos , Ecossistema
20.
J Med Entomol ; 55(1): 193-199, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29029183

RESUMO

The development of resistance by mosquitoes to current synthetic compounds has resulted in reduced effectiveness of prevention and control methods worldwide. An alternative nonchemical based control tools are needed to be evaluated particularly plant-derived essential oils. Several components of vetiver oil have been documented as insect repellents. However, detailed knowledge of those components action against insect remains unknown. In this study, behavioral response of Anopheles minimus to four constituents of vetiver oil (valencene, terpinen-4-ol, isolongifolene, vetiverol) was evaluated by using the high-throughput screening assay system. Vetiverol and isolongifolene exhibited strong contact irritancy action at 1.0% (80.2% escaping) and 5.0% (81.7% escaping) concentration, respectively, while moderate action was found in both valencene and terpinen-4-ol at 5.0% (57.6% escaping). Only at 1.0% (0.7 spatial activity index [SAI]) and 5.0% (1.0 SAI) of valencene and 0.5% (0.7 SAI) of isolongifolene showed spatial repellency activity. High mortality (58.9-98.2%) was recorded in all concentration of vetiverol and isolongifolene. Meanwhile, valencene exhibited high mortality only at 5.0%, terpinen-4-ol showed very low toxic action (0-4.3%) in all concentration. These proved that valencene in vetiver oil is the promising constituent that can be developed as an alternative mosquito control mean in efforts to prevent disease transmission.


Assuntos
Anopheles , Repelentes de Insetos , Controle de Mosquitos , Sesquiterpenos , Terpenos , Animais , Feminino , Malária , Mosquitos Vetores , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA