Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 181: 106127, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061167

RESUMO

Medial temporal lobe (MTL) subregions are differentially affected in Alzheimer's disease (AD), with a specific involvement of the entorhinal cortex (ERC), perirhinal cortex and hippocampal cornu ammonis (CA)1. While amyloid (Aß) and APOEε4 are respectively the first molecular change and the main genetic risk factor in AD, their links with MTL atrophy remain relatively unclear. Our aim was to uncover these effects using baseline data from 130 participants included in the Age-Well study, for whom ultra-high-resolution structural MRI, amyloid-PET and APOEε4 genotype were available. No volume differences were observed between Aß + (n = 24) and Aß- (n = 103), nor between APOE4+ (n = 35) and APOE4- (n = 95) participants. However, our analyses showed that both Aß and APOEε4 status interacted with age on CA1, which is known to be specifically atrophied in early AD. In addition, APOEε4 status moderated the effects of age on other subregions (subiculum, ERC), suggesting a more important contribution of APOEε4 than Aß to MTL atrophy in cognitively unimpaired population. These results are crucial to develop MRI-based biomarkers to detect early AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Idoso , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Atrofia/patologia , Genótipo , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo , Lobo Temporal/metabolismo
2.
Front Aging Neurosci ; 13: 750154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720998

RESUMO

Medial temporal lobe (MTL) atrophy is a key feature of Alzheimer's disease (AD), however, it also occurs in typical aging. To enhance the clinical utility of this biomarker, we need to better understand the differential effects of age and AD by encompassing the full AD-continuum from cognitively unimpaired (CU) to dementia, including all MTL subregions with up-to-date approaches and using longitudinal designs to assess atrophy more sensitively. Age-related trajectories were estimated using the best-fitted polynomials in 209 CU adults (aged 19-85). Changes related to AD were investigated among amyloid-negative (Aß-) (n = 46) and amyloid-positive (Aß+) (n = 14) CU, Aß+ patients with mild cognitive impairment (MCI) (n = 33) and AD (n = 31). Nineteen MCI-to-AD converters were also compared with 34 non-converters. Relationships with cognitive functioning were evaluated in 63 Aß+ MCI and AD patients. All participants were followed up to 47 months. MTL subregions, namely, the anterior and posterior hippocampus (aHPC/pHPC), entorhinal cortex (ERC), Brodmann areas (BA) 35 and 36 [as perirhinal cortex (PRC) substructures], and parahippocampal cortex (PHC), were segmented from a T1-weighted MRI using a new longitudinal pipeline (LASHiS). Statistical analyses were performed using mixed models. Adult lifespan models highlighted both linear (PRC, BA35, BA36, PHC) and nonlinear (HPC, aHPC, pHPC, ERC) trajectories. Group comparisons showed reduced baseline volumes and steeper volume declines over time for most of the MTL subregions in Aß+ MCI and AD patients compared to Aß- CU, but no differences between Aß- and Aß+ CU or between Aß+ MCI and AD patients (except in ERC). Over time, MCI-to-AD converters exhibited a greater volume decline than non-converters in HPC, aHPC, and pHPC. Most of the MTL subregions were related to episodic memory performances but not to executive functioning or speed processing. Overall, these results emphasize the benefits of studying MTL subregions to distinguish age-related changes from AD. Interestingly, MTL subregions are unequally vulnerable to aging, and those displaying non-linear age-trajectories, while not damaged in preclinical AD (Aß+ CU), were particularly affected from the prodromal stage (Aß+ MCI). This volume decline in hippocampal substructures might also provide information regarding the conversion from MCI to AD-dementia. All together, these findings provide new insights into MTL alterations, which are crucial for AD-biomarkers definition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA