Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 21(1): 287, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37118754

RESUMO

BACKGROUND: Accurate differentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastomas (GBMs) is essential for appropriate clinical management and prognostication of these patients. In the present study, we sought to validate the findings of our previously developed multiparametric MRI model in a new cohort of GBM patients treated with standard therapy in identifying PsP cases. METHODS: Fifty-six GBM patients demonstrating enhancing lesions within 6 months after completion of concurrent chemo-radiotherapy (CCRT) underwent anatomical imaging, diffusion and perfusion MRI on a 3 T magnet. Subsequently, patients were classified as TP + mixed tumor (n = 37) and PsP (n = 19). When tumor specimens were available from repeat surgery, histopathologic findings were used to identify TP + mixed tumor (> 25% malignant features; n = 34) or PsP (< 25% malignant features; n = 16). In case of non-availability of tumor specimens, ≥ 2 consecutive conventional MRIs using mRANO criteria were used to determine TP + mixed tumor (n = 3) or PsP (n = 3). The multiparametric MRI-based prediction model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI derived parameters from contrast enhancing regions. In the next step, PP values were used to characterize each lesion as PsP or TP+ mixed tumor. The lesions were considered as PsP if the PP value was < 50% and TP+ mixed tumor if the PP value was ≥ 50%. Pearson test was used to determine the concordance correlation coefficient between PP values and histopathology/mRANO criteria. The area under ROC curve (AUC) was used as a quantitative measure for assessing the discriminatory accuracy of the prediction model in identifying PsP and TP+ mixed tumor. RESULTS: Multiparametric MRI model correctly predicted PsP in 95% (18/19) and TP+ mixed tumor in 57% of cases (21/37) with an overall concordance rate of 70% (39/56) with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.56; p < 0.001). The ROC analyses revealed an accuracy of 75.7% in distinguishing PsP from TP+ mixed tumor. Leave-one-out cross-validation test revealed that 73.2% of cases were correctly classified as PsP and TP + mixed tumor. CONCLUSIONS: Our multiparametric MRI based prediction model may be helpful in identifying PsP in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Progressão da Doença , Imageamento por Ressonância Magnética , Estudos Retrospectivos
2.
Mol Psychiatry ; 27(5): 2380-2392, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35296811

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Transmissão Sináptica
3.
J Neurooncol ; 163(1): 173-183, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37129737

RESUMO

PURPOSE: Autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) is a promising treatment modality for glioblastomas. The purpose of this study was to investigate the potential utility of multiparametric MRI-based prediction model in evaluating treatment response in glioblastoma patients treated with DCVax-L. METHODS: Seventeen glioblastoma patients treated with standard-of-care therapy + DCVax-L were included. When tumor progression (TP) was suspected and repeat surgery was being contemplated, we sought to ascertain the number of cases correctly classified as TP + mixed response or pseudoprogression (PsP) from multiparametric MRI-based prediction model using histopathology/mRANO criteria as ground truth. Multiparametric MRI model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI-derived parameters. A comparison of overall survival (OS) was performed between patients treated with standard-of-care therapy + DCVax-L and standard-of-care therapy alone (external controls). Additionally, Kaplan-Meier analyses were performed to compare OS between two groups of patients using PsP, Ki-67, and MGMT promoter methylation status as stratification variables. RESULTS: Multiparametric MRI model correctly predicted TP + mixed response in 72.7% of cases (8/11) and PsP in 83.3% (5/6) with an overall concordance rate of 76.5% with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.54; p = 0.026). DCVax-L-treated patients had significantly prolonged OS than those treated with standard-of-care therapy (22.38 ± 12.8 vs. 13.8 ± 9.5 months, p = 0.040). Additionally, glioblastomas with PsP, MGMT promoter methylation status, and Ki-67 values below median had longer OS than their counterparts. CONCLUSION: Multiparametric MRI-based prediction model can assess treatment response to DCVax-L in patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento por Ressonância Magnética Multiparamétrica , Vacinas , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Antígeno Ki-67 , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Células Dendríticas
4.
NMR Biomed ; 35(7): e4719, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35233862

RESUMO

Pseudoprogression (PsP) refers to treatment-related clinico-radiologic changes mimicking true progression (TP) that occurs in patients with glioblastoma (GBM), predominantly within the first 6 months after the completion of surgery and concurrent chemoradiation therapy (CCRT) with temozolomide. Accurate differentiation of TP from PsP is essential for making informed decisions on appropriate therapeutic intervention as well as for prognostication of these patients. Conventional neuroimaging findings are often equivocal in distinguishing between TP and PsP and present a considerable diagnostic dilemma to oncologists and radiologists. These challenges have emphasized the need for developing alternative imaging techniques that may aid in the accurate diagnosis of TP and PsP. In this review, we encapsulate the current state of knowledge in the clinical applications of commonly used metabolic and physiologic magnetic resonance (MR) imaging techniques such as diffusion and perfusion imaging and proton spectroscopy in distinguishing TP from PsP. We also showcase the potential of promising imaging techniques, such as amide proton transfer and amino acid-based positron emission tomography, in providing useful information about the treatment response. Additionally, we highlight the role of "radiomics", which is an emerging field of radiology that has the potential to change the way in which advanced MR techniques are utilized in assessing treatment response in GBM patients. Finally, we present our institutional experiences and discuss future perspectives on the role of multiparametric MR imaging in identifying PsP in GBM patients treated with "standard-of-care" CCRT as well as novel/targeted therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Progressão da Doença , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imageamento por Ressonância Magnética/métodos , Prótons
5.
Mol Psychiatry ; 26(6): 2137-2147, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33479514

RESUMO

Low reward responsiveness (RR) is associated with poor psychological well-being, psychiatric disorder risk, and psychotropic treatment resistance. Functional MRI studies have reported decreased activity within the brain's reward network in individuals with RR deficits, however the neurochemistry underlying network hypofunction in those with low RR remains unclear. This study employed ultra-high field glutamate chemical exchange saturation transfer (GluCEST) imaging to investigate the hypothesis that glutamatergic deficits within the reward network contribute to low RR. GluCEST images were acquired at 7.0 T from 45 participants (ages 15-29, 30 females) including 15 healthy individuals, 11 with depression, and 19 with psychosis spectrum symptoms. The GluCEST contrast, a measure sensitive to local glutamate concentration, was quantified in a meta-analytically defined reward network comprised of cortical, subcortical, and brainstem regions. Associations between brain GluCEST contrast and Behavioral Activation System Scale RR scores were assessed using multiple linear regressions. Analyses revealed that reward network GluCEST contrast was positively and selectively associated with RR, but not other clinical features. Follow-up investigations identified that this association was driven by the subcortical reward network and network areas that encode the salience of valenced stimuli. We observed no association between RR and the GluCEST contrast within non-reward cortex. This study thus provides new evidence that reward network glutamate levels contribute to individual differences in RR. Decreased reward network excitatory neurotransmission or metabolism may be mechanisms driving reward network hypofunction and RR deficits. These findings provide a framework for understanding the efficacy of glutamate-modulating psychotropics such as ketamine for treating anhedonia.


Assuntos
Ácido Glutâmico , Transtornos Psicóticos , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Recompensa , Adulto Jovem
6.
J Clin Ultrasound ; 50(9): 1353-1359, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36205388

RESUMO

In view of the inherent limitations associated with performing dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) in clinical settings, current study was designed to provide a proof of principle that Doppler sonography and DCE-MRI derived perfusion parameters yield similar hemodynamic information from metastatic lymph nodes in squamous cell carcinomas of head and neck (HNSCCs). Strong positive correlations between volume fraction of plasma space in tissues (Vp ) and blood volume (r = 0.72, p = 0.02) and between Vp and %area perfused (r = 0.65, p = 0.04) were observed. Additionally, a moderate positive correlation trending towards significance was obtained between volume transfer constant (Ktrans ) and %area perfused (r = 0.49, p = 0.09).


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Meios de Contraste , Quimioterapia de Indução , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Imageamento por Ressonância Magnética/métodos
7.
Brain ; 143(7): 2058-2072, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32671406

RESUMO

Intravascular injection of certain adeno-associated virus vector serotypes can cross the blood-brain barrier to deliver a gene into the CNS. However, gene distribution has been much more limited within the brains of large animals compared to rodents, rendering this approach suboptimal for treatment of the global brain lesions present in most human neurogenetic diseases. The most commonly used serotype in animal and human studies is 9, which also has the property of being transported via axonal pathways to distal neurons. A small number of other serotypes share this property, three of which were tested intravenously in mice compared to 9. Serotype hu.11 transduced fewer cells in the brain than 9, rh8 was similar to 9, but hu.32 mediated substantially greater transduction than the others throughout the mouse brain. To evaluate the potential for therapeutic application of the hu.32 serotype in a gyrencephalic brain of larger mammals, a hu.32 vector expressing the green fluorescent protein reporter gene was evaluated in the cat. Transduction was widely distributed in the cat brain, including in the cerebral cortex, an important target since mental retardation is an important component of many of the human neurogenetic diseases. The therapeutic potential of a hu.32 serotype vector was evaluated in the cat homologue of the human lysosomal storage disease alpha-mannosidosis, which has globally distributed lysosomal storage lesions in the brain. Treated alpha-mannosidosis cats had reduced severity of neurological signs and extended life spans compared to untreated cats. The extent of therapy was dose dependent and intra-arterial injection was more effective than intravenous delivery. Pre-mortem, non-invasive magnetic resonance spectroscopy and diffusion tensor imaging detected differences between the low and high doses, and showed normalization of grey and white matter imaging parameters at the higher dose. The imaging analysis was corroborated by post-mortem histological analysis, which showed reversal of histopathology throughout the brain with the high dose, intra-arterial treatment. The hu.32 serotype would appear to provide a significant advantage for effective treatment of the gyrencephalic brain by systemic adeno-associated virus delivery in human neurological diseases with widespread brain lesions.


Assuntos
Encéfalo/virologia , Dependovirus , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos , alfa-Manosidose/genética , Animais , Encéfalo/patologia , Gatos , Técnicas de Transferência de Genes , Transdução Genética
8.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918043

RESUMO

Glioblastoma (GBM) is the most malignant brain tumor in adults, with a dismal prognosis despite aggressive multi-modal therapy. Immunotherapy is currently being evaluated as an alternate treatment modality for recurrent GBMs in clinical trials. These immunotherapeutic approaches harness the patient's immune response to fight and eliminate tumor cells. Standard MR imaging is not adequate for response assessment to immunotherapy in GBM patients even after using refined response assessment criteria secondary to amplified immune response. Thus, there is an urgent need for the development of effective and alternative neuroimaging techniques for accurate response assessment. To this end, some groups have reported the potential of diffusion and perfusion MR imaging and amino acid-based positron emission tomography techniques in evaluating treatment response to different immunotherapeutic regimens in GBMs. The main goal of these techniques is to provide definitive metrics of treatment response at earlier time points for making informed decisions on future therapeutic interventions. This review provides an overview of available immunotherapeutic approaches used to treat GBMs. It discusses the limitations of conventional imaging and potential utilities of physiologic imaging techniques in the response assessment to immunotherapies. It also describes challenges associated with these imaging methods and potential solutions to avoid them.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Diagnóstico por Imagem , Glioblastoma/diagnóstico por imagem , Animais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/terapia , Tomada de Decisão Clínica , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/normas , Gerenciamento Clínico , Suscetibilidade a Doenças , Glioblastoma/etiologia , Glioblastoma/terapia , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Prognóstico , Resultado do Tratamento
9.
J Magn Reson Imaging ; 52(4): 978-997, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32190946

RESUMO

Glioblastoma is the most common and most malignant primary brain tumor. Despite aggressive multimodal treatment, its prognosis remains poor. Even with continuous developments in MRI, which has provided us with newer insights into the diagnosis and understanding of tumor biology, response assessment in the posttherapy setting remains challenging. We believe that the integration of additional information from advanced neuroimaging techniques can further improve the diagnostic accuracy of conventional MRI. In this article, we review the utility of advanced neuroimaging techniques such as diffusion-weighted imaging, diffusion tensor imaging, perfusion-weighted imaging, proton magnetic resonance spectroscopy, and chemical exchange saturation transfer in characterizing and evaluating treatment response in patients with glioblastoma. We will also discuss the existing challenges and limitations of using these techniques in clinical settings and possible solutions to avoiding pitfalls in study design, data acquisition, and analysis for future studies. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3 J. Magn. Reson. Imaging 2020;52:978-997.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Humanos , Imageamento por Ressonância Magnética
10.
J Magn Reson Imaging ; 52(3): 823-835, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32128914

RESUMO

BACKGROUND: Quantitative susceptibility mapping (QSM) uses prior information to reconstruct maps, but prior information may not show pathology and introduce inconsistencies with susceptibility maps, degrade image quality and inadvertently smoothing image features. PURPOSE: To develop a local field data-driven QSM reconstruction that does not depend on spatial edge prior information. STUDY TYPE: Retrospective. SUBJECTS, ANIMAL MODELS: A dataset from 2016 ISMRM QSM Challenge, 11 patients with glioblastoma, a patient with microbleeds and porcine heart. SEQUENCE/FIELD STRENGTH: 3D gradient echo sequence on 3T and 7T scanners. ASSESSMENT: Accuracy was compared to Calculation of Susceptibility through Multiple Orientation Sampling (COSMOS), and several published techniques using region of interest (ROI) measurements, root-mean-squared error (RMSE), structural similarity index metric (SSIM), and high-frequency error norm (HFEN). Numerical ranking and semiquantitative image grading was performed by three expert observers to assess overall image quality (IQ) and image sharpness (IS). STATISTICAL TESTS: Bland-Altman, Friedman test, and Conover multiple comparisons. RESULTS: Loss adaptive dipole inversion (LADI) (ß = 0.82, R2 = 0.96), morphology-enabled dipole inversion (MEDI) (ß = 0.91, R2 = 0.97), and fast nonlinear susceptibility inversion (FANSI) (ß = 0.81, R2 = 0.98) had excellent correlation with COSMOS and no bias was detected (bias = 0.006 ± 0.014, P < 0.05). In glioblastoma patients, LADI showed consistently better performance (IQGrade = 2.6 ± 0.4, ISGrade = 2.6 ± 0.3, IQRank = 3.5 ± 0.4, ISRank = 3.9 ± 0.2) compared with MEDI (IQGrade = 2.1 ± 0.3, ISGrade = 2 ± 0.5, IQRank = 2.4 ± 0.5, ISRank = 2.8 ± 0.2) and FANSI (IQGrade = 2.2 ± 0.5, ISGrade = 2 ± 0.4, IQRank = 2.8 ± 0.3, ISRank = 2.1 ± 0.2). Dark artifact visible near the infarcted region in MEDI (InfMEDI = -0.27 ± 0.06 ppm) was better mitigated by FANSI (InfFANSI-TGV = -0.17 ± 0.05 ppm) and LADI (InfLADI = -0.18 ± 0.05 ppm). CONCLUSION: For neuroimaging applications, LADI preserved image sharpness and fine features in glioblastoma and microbleed patients. LADI performed better at mitigating artifacts in cardiac QSM. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY STAGE: 1 J. Magn. Reson. Imaging 2020;52:823-835.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Estudos Retrospectivos , Suínos
11.
Br J Cancer ; 120(1): 54-56, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478409

RESUMO

EGFRvIII targeted chimeric antigen receptor T (CAR-T) cell therapy has recently been reported for treating glioblastomas (GBMs); however, physiology-based MRI parameters have not been evaluated in this setting. Ten patients underwent multiparametric MRI at baseline, 1, 2 and 3 months after CAR-T therapy. Logistic regression model derived progression probabilities (PP) using imaging parameters were used to assess treatment response. Four lesions from "early surgery" group demonstrated high PP at baseline suggestive of progression, which was confirmed histologically. Out of eight lesions from remaining six patients, three lesions with low PP at baseline remained stable. Two lesions with high PP at baseline were associated with large decreases in PP reflecting treatment response, whereas other two lesions with high PP at baseline continued to demonstrate progression. One patient didn't have baseline data but demonstrated progression on follow-up. Our findings indicate that multiparametric MRI may be helpful in monitoring CAR-T related early therapeutic changes in GBM patients.


Assuntos
Receptores ErbB/imunologia , Glioblastoma/terapia , Imunoterapia Adotiva , Recidiva Local de Neoplasia/terapia , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico
12.
NMR Biomed ; 32(2): e4042, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556932

RESUMO

Accurate differentiation of true progression (TP) from pseudoprogression (PsP) in patients with glioblastomas (GBMs) is essential for planning adequate treatment and for estimating clinical outcome measures and future prognosis. The purpose of this study was to investigate the utility of three-dimensional echo planar spectroscopic imaging (3D-EPSI) in distinguishing TP from PsP in GBM patients. For this institutional review board approved and HIPAA compliant retrospective study, 27 patients with GBM demonstrating enhancing lesions within six months of completion of concurrent chemo-radiation therapy were included. Of these, 18 were subsequently classified as TP and 9 as PsP based on histological features or follow-up MRI studies. Parametric maps of choline/creatine (Cho/Cr) and choline/N-acetylaspartate (Cho/NAA) were computed and co-registered with post-contrast T1 -weighted and FLAIR images. All lesions were segmented into contrast enhancing (CER), immediate peritumoral (IPR), and distal peritumoral (DPR) regions. For each region, Cho/Cr and Cho/NAA ratios were normalized to corresponding metabolite ratios from contralateral normal parenchyma and compared between TP and PsP groups. Logistic regression analyses were performed to obtain the best model to distinguish TP from PsP. Significantly higher Cho/NAA was observed from CER (2.69 ± 1.00 versus 1.56 ± 0.51, p = 0.003), IPR (2.31 ± 0.92 versus 1.53 ± 0.56, p = 0.030), and DPR (1.80 ± 0.68 versus 1.19 ± 0.28, p = 0.035) regions in TP patients compared with those with PsP. Additionally, significantly elevated Cho/Cr (1.74 ± 0.44 versus 1.34 ± 0.26, p = 0.023) from CER was observed in TP compared with PsP. When these parameters were incorporated in multivariate regression analyses, a discriminatory model with a sensitivity of 94% and a specificity of 87% was observed in distinguishing TP from PsP. These results indicate the utility of 3D-EPSI in differentiating TP from PsP with high sensitivity and specificity.


Assuntos
Progressão da Doença , Imagem Ecoplanar , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Área Sob a Curva , Feminino , Humanos , Modelos Logísticos , Masculino , Metaboloma , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética , Curva ROC
13.
J Magn Reson Imaging ; 49(1): 184-194, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29676844

RESUMO

BACKGROUND: Accurate differentiation of brain infections from necrotic glioblastomas (GBMs) may not always be possible on morphologic MRI or on diffusion tensor imaging (DTI) and dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) if these techniques are used independently. PURPOSE: To investigate the combined analysis of DTI and DSC-PWI in distinguishing brain injections from necrotic GBMs. STUDY TYPE: Retrospective. POPULATION: Fourteen patients with brain infections and 21 patients with necrotic GBMs. FIELD STRENGTH/SEQUENCE: 3T MRI, DTI, and DSC-PWI. ASSESSMENT: Parametric maps of mean diffusivity (MD), fractional anisotropy (FA), coefficient of linear (CL), and planar anisotropy (CP) and leakage corrected cerebral blood volume (CBV) were computed and coregistered with postcontrast T1 -weighted and FLAIR images. All lesions were segmented into the central core and enhancing region. For each region, median values of MD, FA, CL, CP, relative CBV (rCBV), and top 90th percentile of rCBV (rCBVmax ) were measured. STATISTICAL TESTS: All parameters from both regions were compared between brain infections and necrotic GBMs using Mann-Whitney tests. Logistic regression analyses were performed to obtain the best model in distinguishing these two conditions. RESULTS: From the central core, significantly lower MD (0.90 × 10-3 ± 0.44 × 10-3 mm2 /s vs. 1.66 × 10-3 ± 0.62 × 10-3 mm2 /s, P = 0.001), significantly higher FA (0.15 ± 0.06 vs. 0.09 ± 0.03, P < 0.001), and CP (0.07 ± 0.03 vs. 0.04 ± 0.02, P = 0.009) were observed in brain infections compared to those in necrotic GBMs. Additionally, from the contrast-enhancing region, significantly lower rCBV (1.91 ± 0.95 vs. 2.76 ± 1.24, P = 0.031) and rCBVmax (3.46 ± 1.41 vs. 5.89 ± 2.06, P = 0.001) were observed from infective lesions compared to necrotic GBMs. FA from the central core and rCBVmax from enhancing region provided the best classification model in distinguishing brain infections from necrotic GBMs, with a sensitivity of 91% and a specificity of 93%. DATA CONCLUSION: Combined analysis of DTI and DSC-PWI may provide better performance in differentiating brain infections from necrotic GBMs. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:184-194.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Glioblastoma/diagnóstico por imagem , Infecções/diagnóstico por imagem , Angiografia por Ressonância Magnética , Necrose/diagnóstico por imagem , Adulto , Idoso , Anisotropia , Encéfalo/microbiologia , Meios de Contraste/administração & dosagem , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos
14.
J Transl Med ; 14(1): 274, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27659543

RESUMO

BACKGROUND: Mutations in the isocitrate dehydrogenase enzyme are present in a majority of lower-grade gliomas and secondary glioblastomas. This mis-sense mutation results in the neomorphic reduction of isocitrate dehydrogenase resulting in an accumulation of the "oncometabolite" 2-hydroxyglutarate (2HG). Detection of 2HG can thus serve as a surrogate biomarker for these mutations, with significant translational implications including improved prognostication. Two dimensional localized correlated spectroscopy (2D L-COSY) at 7T is a highly-sensitive non-invasive technique for assessing brain metabolism. This study aims to assess tumor metabolism using 2D L-COSY at 7T for the detection of 2HG in IDH-mutant gliomas. METHODS: Nine treatment-naïve patients with suspected intracranial neoplasms were scanned at 7T MRI/MRS scanner using the 2D L-COSY technique. 2D-spectral processing and analyses were performed using a MATLAB-based reconstruction algorithm. Cross and diagonal peak volumes were quantified in the 2D L-COSY spectra and normalized with respect to the creatine peak at 3.0 ppm and quantified data were compared with previously-published data from six normal subjects. Detection of 2HG was validated using findings from immunohistochemical (IHC) staining in patients who subsequently underwent surgical resection. RESULTS: 2HG was detected in both of the IDH-mutated gliomas (grade III Anaplastic Astrocytoma and grade II Diffuse Astrocytoma) and was absent in IDH wild-type gliomas and in a patient with breast cancer metastases. 2D L-COSY was also able to resolve complex and overlapping resonances including phosphocholine (PC) from glycerophosphocholine (GPC), lactate (Lac) from lipids and glutamate (Glu) from glutamine (Gln). CONCLUSIONS: This study demonstrates the ability of 2D L-COSY to unambiguously detect 2HG in addition to other neuro metabolites. These findings may aid in establishing 2HG as a biomarker of malignant progression as well as for disease monitoring in IDH-mutated gliomas.

15.
MAGMA ; 29(3): 535-41, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27072685

RESUMO

OBJECTIVE: To quantify the periventricular venous density in neuromyelitis optica spectrum disease (NMOSD) in comparison to that in patients with multiple sclerosis (MS) and healthy control subjects. MATERIALS AND METHODS: Sixteen patients with NMOSD, 16 patients with MS and 16 healthy control subjects underwent 7.0-Tesla (7T) MRI. The imaging protocol included T2*-weighted (T2*w) fast low angle-shot (FLASH) and fluid-attenuated inversion recovery (FLAIR) sequences. The periventricular venous area (PVA) was manually determined by a blinded investigator in order to estimate the periventricular venous density in a region of interest-based approach. RESULTS: No significant differences in periventricular venous density indicated by PVA were detectable in NMOSD versus healthy controls (p = 0.226). In contrast, PVA was significantly reduced in MS patients compared to healthy controls (p = 0.013). CONCLUSION: Unlike patients with MS, those suffering from NMOSD did not show reduced venous visibility. This finding may underscore primary and secondary pathophysiological differences between these two distinct diseases of the central nervous system.


Assuntos
Imageamento por Ressonância Magnética , Neuromielite Óptica/diagnóstico por imagem , Veias/diagnóstico por imagem , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Neuromielite Óptica/patologia , Veias/patologia , Adulto Jovem
16.
Mol Ther Methods Clin Dev ; 32(2): 101272, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38946937

RESUMO

Alpha-mannosidosis is caused by a genetic deficiency of lysosomal alpha-mannosidase, leading to the widespread presence of storage lesions in the brain and other tissues. Enzyme replacement therapy is available but is not approved for treating the CNS, since the enzyme does not penetrate the blood-brain barrier. However, intellectual disability is a major manifestation of the disease; thus, a complimentary treatment is needed. While enzyme replacement therapy into the brain is technically feasible, it requires ports and frequent administration over time that are difficult to manage medically. Infusion of adeno-associated viral vectors into the cerebrospinal fluid is an attractive route for broadly targeting brain cells. We demonstrate here the widespread post-symptomatic correction of the globally distributed storage lesions by infusion of a high dose of AAV1-feline alpha-mannosidase (fMANB) into the CSF via the cisterna magna in the gyrencephalic alpha-mannosidosis cat brain. Significant improvements in clinical parameters occurred, and widespread global correction was documented pre-mortem by non-invasive magnetic resonance imaging. Postmortem analysis demonstrated high levels of MANB activity and reversal of lysosomal storage lesions throughout the brain. Thus, CSF treatment by adeno-associated viral vector gene therapy appears to be a suitable complement to systemic enzyme replacement therapy to potentially treat the whole patient.

17.
Radiology ; 267(3): 851-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23360740

RESUMO

PURPOSE: To detect regional metabolic differences in amyotrophic lateral sclerosis (ALS) with whole-brain echo-planar spectroscopic imaging. MATERIALS AND METHODS: Sixteen patients with ALS (nine men, seven women; mean age, 56.6 years), five persons suspected of having ALS (four men, one woman; mean age, 62.6 years), and 10 healthy control subjects (five men, five women; mean age, 56.1 years) underwent echo-planar spectroscopic imaging after providing informed consent. The study was approved by the institutional review board and complied with HIPAA. Data were analyzed with the Metabolic Imaging and Data Analysis System software, and processed metabolite maps were coregistered and normalized to a standard brain template. Metabolite maps of creatine (Cr), choline (Cho), and N-acetylaspartate (NAA) were segmented into 81 regions with Automated Anatomical Labeling software to measure metabolic changes throughout the brains of patients with ALS. Statistical analysis involved an unpaired, uncorrected, two-sided Student t test. RESULTS: The NAA/Cho ratio across six regions was significantly lower by a mean of 23% (P ≤ .01) in patients with ALS than in control subjects. These regions included the caudate, lingual gyrus, supramarginal gyrus, and right and left superior and right inferior occipital lobes. The NAA/Cr ratio was significantly lower (P ≤ .01) in eight regions in the patient group, by a mean of 16%. These included the caudate, cuneus, frontal inferior operculum, Heschl gyrus, precentral gyrus, rolandic operculum, and superior and inferior occipital lobes. The Cho/Cr ratio did not significantly differ in any region between patient and control groups. CONCLUSION: Whole-brain echo-planar spectroscopic imaging permits detection of regional metabolic abnormalities in ALS, including not only the motor cortex but also several other regions implicated in ALS pathophysiologic findings.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Encéfalo/patologia , Imagem Ecoplanar/métodos , Espectroscopia de Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
18.
AJR Am J Roentgenol ; 200(1): 35-43, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23255739

RESUMO

OBJECTIVE: The objective of our study was to predict response to chemoradiation therapy in patients with head and neck squamous cell carcinoma (HNSCC) by combined use of diffusion-weighted imaging (DWI) and high-spatial-resolution, high-temporal-resolution dynamic contrast-enhanced MRI (DCE-MRI) parameters from primary tumors and metastatic nodes. SUBJECTS AND METHODS: Thirty-two patients underwent pretreatment DWI and DCE-MRI using a modified radial imaging sequence. Postprocessing of data included motion-correction algorithms to reduce motion artifacts. The median apparent diffusion coefficient (ADC), volume transfer constant (K(trans)), extracellular extravascular volume fraction (v(e)), and plasma volume fraction (v(p)) were computed from primary tumors and nodal masses. The quality of the DCE-MRI maps was estimated using a threshold median chi-square value of 0.10 or less. Multivariate logistic regression and receiver operating characteristic curve analyses were used to determine the best model to discriminate responders from nonresponders. RESULTS: Acceptable χ(2) values were observed from 84% of primary tumors and 100% of nodal masses. Five patients with unsatisfactory DCE-MRI data were excluded and DCE-MRI data for three patients who died of unrelated causes were censored from analysis. The median follow-up for the remaining patients (n = 24) was 23.72 months. When ADC and DCE-MRI parameters (K(trans), v(e), v(p)) from both primary tumors and nodal masses were incorporated into multivariate logistic regression analyses, a considerably higher discriminative accuracy (area under the curve [AUC] = 0.85) with a sensitivity of 81.3% and specificity of 75% was observed in differentiating responders (n = 16) from nonresponders (n = 8). CONCLUSION: The combined use of DWI and DCE-MRI parameters from both primary tumors and nodal masses may aid in prediction of response to chemoradiation therapy in patients with HNSCC.


Assuntos
Carcinoma de Células Escamosas/diagnóstico , Quimiorradioterapia , Meios de Contraste , Imagem de Difusão por Ressonância Magnética , Neoplasias de Cabeça e Pescoço/diagnóstico , Angiografia por Ressonância Magnética , Carcinoma de Células Escamosas/terapia , Feminino , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Processamento de Imagem Assistida por Computador , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Curva ROC , Sensibilidade e Especificidade
19.
Clin Cancer Res ; 29(14): 2588-2592, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37227179

RESUMO

The highly aggressive nature of glioblastoma carries a dismal prognosis despite aggressive multimodal therapy. Alternative treatment regimens, such as immunotherapies, are known to intensify the inflammatory response in the treatment field. Follow-up imaging in these scenarios often mimics disease progression on conventional MRI, making accurate evaluation extremely challenging. To this end, revised criteria for assessment of treatment response in high-grade gliomas were successfully proposed by the RANO Working Group to distinguish pseudoprogression from true progression, with intrinsic constraints related to the postcontrast T1-weighted MRI sequence. To address these existing limitations, our group proposes a more objective and quantifiable "treatment agnostic" model, integrating into the RANO criteria advanced multimodal neuroimaging techniques, such as diffusion tensor imaging (DTI), dynamic susceptibility contrast-perfusion weighted imaging (DSC-PWI), dynamic contrast enhanced (DCE)-MRI, MR spectroscopy, and amino acid-based positron emission tomography (PET) imaging tracers, along with artificial intelligence (AI) tools (radiomics, radiogenomics, and radiopathomics) and molecular information to address this complex issue of treatment-related changes versus tumor progression in "real-time", particularly in the early posttreatment window. Our perspective delineates the potential of incorporating multimodal neuroimaging techniques to improve consistency and automation for the assessment of early treatment response in neuro-oncology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Glioblastoma/patologia , Imagem de Tensor de Difusão , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos
20.
J Neurotrauma ; 40(1-2): 74-85, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35876453

RESUMO

Traumatic brain injury (TBI) causes significant white matter injury, which has been characterized by various rodent and human clinical studies. The exact time course of imaging changes in a pediatric brain after TBI and its relation to biomarkers of injury and cellular function, however, is unknown. To study the changes in major white matter structures using a valid model of TBI that is comparable to a human pediatric brain in terms of size and anatomical features, we utilized a four-week-old pediatric porcine model of injury with controlled cortical impact (CCI). Using diffusion tensor imaging differential tractography, we show progressive anisotropy changes at major white matter tracts such as the corona radiata and inferior fronto-occipital fasciculus between day 1 and day 30 after injury. Moreover, correlational tractography shows a large part of bilateral corona radiata having positive correlation with the markers of cellular respiration. In contrast, bilateral corona radiata has a negative correlation with the plasma biomarkers of injury such as neurofilament light or glial fibrillary acidic protein. These are expected correlational findings given that higher integrity of white matter would be expected to correlate with lower injury biomarkers. We then studied the magnetic resonance spectroscopy findings and report decrease in a N-acetylaspartate/creatinine (NAA/Cr) ratio at the pericontusional cortex, subcortical white matter, corona radiata, thalamus, genu, and splenium of corpus callosum at 30 days indicating injury. There was also an increase in choline/creatinine ratio in these regions indicating rapid membrane turnover. Given the need for a pediatric TBI model that is comparable to human pediatric TBI, these data support the use of a pediatric pig model with CCI in future investigations of therapeutic agents. This model will allow future TBI researchers to rapidly translate our pre-clinical study findings into clinical trials for pediatric TBI.


Assuntos
Lesões Encefálicas Traumáticas , Substância Branca , Animais , Criança , Humanos , Anisotropia , Biomarcadores/análise , Biomarcadores/sangue , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Creatinina/sangue , Imagem de Tensor de Difusão/métodos , Suínos , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA