Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(3): 430-438, 2024 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-38932527

RESUMO

Monitoring airway impedance has significant clinical value in accurately assessing and diagnosing pulmonary function diseases at an early stage. To address the issue of large oscillator size and high power consumption in current pulmonary function devices, this study adopts a new strategy of expiration-driven oscillation. A lightweight and low-power airway impedance monitoring system with integrated sensing, control circuitry, and dynamic feedback system, providing visual feedback on the system's status, was developed. The respiratory impedance measurement experiments and statistical comparisons indicated that the system could achieve stable measurement of airway impedance at 5 Hz. The frequency spectrum curves of respiratory impedance ( R and X) showed consistent trends with those obtained from the clinical pulmonary function instrument, specifically the impulse oscillometry system (IOS). The differences between them were all less than 1.1 cm H 2O·s/L. Additionally, there was a significant statistical difference in the respiratory impedance R5 between the exercise and rest groups, which suggests that the system can measure the variability of airway resistance parameters during exercise. Therefore, the impedance monitoring system developed in this study supports subjects in performing handheld, continuous measurements of dynamic changes in airway impedance over an extended period of time. This research provides a foundation for further developing low-power, portable, and even wearable devices for dynamic monitoring of pulmonary function.


Assuntos
Resistência das Vias Respiratórias , Impedância Elétrica , Oscilometria , Testes de Função Respiratória , Humanos , Oscilometria/instrumentação , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Testes de Função Respiratória/instrumentação , Expiração/fisiologia , Desenho de Equipamento , Exercício Físico
2.
Adv Mater ; 36(30): e2404826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38743030

RESUMO

Binary antimony selenide (Sb2Se3) is a promising inorganic light-harvesting material with high stability, nontoxicity, and wide light harvesting capability. In this photovoltaic material, it has been recognized that deep energy level defects with large carrier capture cross section, such as VSe (selenium vacancy), lead to serious open-circuit voltage (VOC) deficit and in turn limit the achievable power conversion efficiency (PCE) of Sb2Se3 solar cells. Understanding the nature of deep-level defects and establishing effective method to eliminate the defects are vital to improving VOC. In this study, a novel directed defect passivation strategy is proposed to suppress the formation of VSe and maintain the composition and morphology of Sb2Se3 film. In particular, through systematic study on the evolution of defect properties, the pathway of defect passivation reaction is revealed. Owing to the inhibition of defect-assisted recombination, the VOC increases, resulting in an improvement of PCE from 7.69% to 8.90%, which is the highest efficiency of Sb2Se3 solar cells prepared by thermal evaporation method with superstrate device configuration. This study proposes a new understanding of the nature of deep-level defects and enlightens the fabrication of high quality Sb2Se3 thin film for solar cell applications.

3.
iScience ; 27(8): 110446, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39108728

RESUMO

Soft tissues experience strain under mechanical stresses, storing energy as residual stresses and strain energy. However, the specific impact of such strain on cell migration and its molecular mechanisms remains unclear. In this study, we investigated this by using polydimethylsiloxane (PDMS) membranes with varying prestrain levels but constant stiffness to mimic tissue-like conditions. Results showed that higher prestrain levels enhanced 3T3 fibroblast adhesion and reduced filopodia formation. Elevated prestrain also increased integrin and vinculin expression, which was associated with lower cell migration rates. Notably, both 3T3 fibroblasts and primary rat airway smooth muscle cells migrated faster toward higher prestrain areas on substrates with strain gradients. Knockdown of integrin or vinculin inhibited 3T3 cell migration directionality, highlighting their critical role. This research reveals a mechanobiological pathway where strain gradients direct cell migration, providing insight into a common mechanotransduction pathway influencing cellular responses to both stiffness and strain-related mechanical cues.

4.
Theranostics ; 14(4): 1744-1763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389834

RESUMO

Rationale: Bitter taste receptors (TAS2Rs) are abundantly expressed in airway smooth muscle cells (ASMCs), which have been recognized as promising targets for bitter agonists to initiate relaxation and thereby prevent excessive airway constriction as the main characteristic of asthma. However, due to the current lack of tested safe and potent agonists functioning at low effective concentrations, there has been no clinically approved TAS2R-based drug for bronchodilation in asthma therapy. This study thus aimed at exploring TAS2R agonists with bronchodilator potential by BitterDB database analysis and cell stiffness screening. Methods: Bitter compounds in the BitterDB database were retrieved and analyzed for their working subtype of TAS2R and effective concentration. Compounds activating TAS2R5, 10, and 14 at < 100 µM effective concentration were identified and subsequently screened by cell stiffness assay using optical magnetic twisting cytometry (OMTC) to identify the most potent to relax ASMCs. Then the compound identified was further characterized for efficacy on various aspects related to relaxation of ASMCs, incl. but not limited to traction force by Fourier transform traction force microscopy (FTTFM), [Ca2+]i signaling by Fluo-4/AM intensity, cell migration by scratch wound healing, mRNA expression by qPCR, and protein expressing by ELISA. The compound identified was also compared to conventional ß-agonist (isoproterenol and salbutamol) for efficacy in reducing cell stiffness of cultured ASMCs and airway resistance of ovalbumin-treated mice. Results: BitterDB analysis found 18 compounds activating TAS2R5, 10, and 14 at < 100 µM effective concentration. Cell stiffness screening of these compounds eventually identified flufenamic acid (FFA) as the most potent compound to rapidly reduce cell stiffness at 1 µM. The efficacy of FFA to relax ASMCs in vitro and abrogate airway resistance in vivo was equivalent to that of conventional ß-agonists. The FFA-induced effect on ASMCs was mediated by TAS2R14 activation, endoplasmic reticulum Ca2+ release, and large-conductance Ca2+-activated K+ (BKCa) channel opening. FFA also attenuated lipopolysaccharide-induced inflammatory response in cultured ASMCs. Conclusions: FFA as a potent TAS2R14 agonist to relax ASMCs while suppressing cytokine release might be a favorite drug agent for further development of TAS2R-based novel dual functional medication for bronchodilation and anti-inflammation in asthma therapy.


Assuntos
Asma , Ácido Flufenâmico , Camundongos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Pulmão/metabolismo , Miócitos de Músculo Liso/metabolismo , Asma/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA