Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transfusion ; 61 Suppl 1: S68-S79, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269433

RESUMO

Although it is well established that transfusion of platelets in cases of severe bleeding reduces mortality, the availability of platelets is hampered by harsh restrictions on shelf life due to elevated risks of microbial contamination and functional losses with room temperature-stored platelets (RTP) kept at 22°C. In contrast, many recent studies have shown that 4°C cold-stored platelets (CSP) are able to overcome these shortcomings leading to the recent Food and Drug Administration licensure for 14-day stored CSP when conventional platelets are unavailable. This work expands the evidence supporting superiority of CSP function by assaying the less explored platelet-mediated clot retraction of RTP and CSP in either autologous plasma (AP) or platelet additive solution (PAS) for up to 21 days. The results demonstrate that CSP have better preservation of contractile function, exhibiting retraction for up to 21 days in both AP and PAS and forming highly ordered fibrin scaffolds similar to those of fresh platelets. In contrast, RTP stored in AP showed impaired contractile function by Day 5 with no retraction after 10 days, whereas PAS-stored RTP retained contractile function for up to 21 days. Collectively, these findings support extended storage of CSP and suggest that storage in PAS can mitigate functional losses in RTP.


Assuntos
Plaquetas/citologia , Preservação de Sangue/métodos , Coagulação Sanguínea , Plaquetas/metabolismo , Fibrina/metabolismo , Humanos , Testes de Função Plaquetária , Refrigeração , Temperatura
2.
Biotechnol Bioeng ; 112(4): 838-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25336058

RESUMO

Infectious agents are increasingly implicated in the development and progression of chronic inflammatory diseases. Several lines of evidence suggest that the common intracellular respiratory pathogen, Chlamydia pneumoniae contributes to the well-established risk factors of atherosclerosis but the exact mechanism is not well understood. It is believed that C. pneumoniae-infected monocytes travel from the lung to the atherosclerotic foci, during which the cells experience mechanical stimuli due to blood flow. In this work, we characterized the effect of physiological levels of shear stress on C. pneumoniae-infected human monocytes in an in vitro flow model. We found that a shear stress of 5 dyn/cm(2) enhanced the expression of pro-inflammatory cytokine IL-1ß only in infected, but not in uninfected, monocytes. We also found that this enhancement is due to the upregulation of IL-1ß gene expression due to shear stress. Our results demonstrate that mechanotransduction is an important, heretofore unaddressed, determinant of inflammatory response to an infection.


Assuntos
Chlamydophila pneumoniae/crescimento & desenvolvimento , Interleucina-1beta/metabolismo , Monócitos/microbiologia , Monócitos/fisiologia , Fenômenos Físicos , Células Cultivadas , Humanos , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA