Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 58(3): 575-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25491100

RESUMO

AIMS/HYPOTHESIS: Aggregation of islet amyloid polypeptide (IAPP) to form amyloid contributes to beta cell dysfunction in type 2 diabetes. Human but not non-amyloidogenic rodent IAPP induces islet macrophage proIL-1ß synthesis. We evaluated the effect of IL-1 receptor antagonist (IL-1Ra) on islet inflammation and dysfunction in a mouse model of type 2 diabetes with amyloid formation. METHODS: Lean and obese male mice (A/a or A(vy)/A at the agouti locus, respectively) with or without beta cell human IAPP expression (hIAPP(Tg/0)) were treated with PBS or IL-1Ra (50 mg kg(-1) day(-1)) from 16 weeks of age. Intraperitoneal glucose and insulin tolerance tests were performed after 8 weeks. Pancreases were harvested for histology and gene expression analysis. RESULTS: Aggregation of human IAPP was associated with marked upregulation of proinflammatory gene expression in islets of obese hIAPP(Tg/0) mice, together with amyloid deposition and fasting hyperglycaemia. IL-1Ra improved glucose tolerance and reduced plasma proinsulin:insulin in both lean and obese hIAPP(Tg/0) mice with no effect on insulin sensitivity. The severity and prevalence of islet amyloid was reduced by IL-1Ra in lean hIAPP (Tg/0) mice, suggesting a feed-forward mechanism by which islet inflammation promotes islet amyloid at the early stages of disease. IL-1Ra limited Il1a, Il1b, Tnf and Ccl2 expression in islets from obese hIAPP(Tg/0) mice, suggesting an altered islet inflammatory milieu. CONCLUSIONS/INTERPRETATION: These data provide the first in vivo evidence­using a transgenic mouse model with amyloid deposits resembling those found in human islets­that IAPP-induced beta cell dysfunction in type 2 diabetes may be mediated by IL-1. Anti-IL-1 therapies may limit islet inflammation and dysfunction associated with amyloid formation.


Assuntos
Amiloide/metabolismo , Interleucina-1/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Animais , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Interleucina-1/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA