Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 467(7317): 863-7, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20944749

RESUMO

Apoptotic cells release 'find-me' signals at the earliest stages of death to recruit phagocytes. The nucleotides ATP and UTP represent one class of find-me signals, but their mechanism of release is not known. Here, we identify the plasma membrane channel pannexin 1 (PANX1) as a mediator of find-me signal/nucleotide release from apoptotic cells. Pharmacological inhibition and siRNA-mediated knockdown of PANX1 led to decreased nucleotide release and monocyte recruitment by apoptotic cells. Conversely, PANX1 overexpression enhanced nucleotide release from apoptotic cells and phagocyte recruitment. Patch-clamp recordings showed that PANX1 was basally inactive, and that induction of PANX1 currents occurred only during apoptosis. Mechanistically, PANX1 itself was a target of effector caspases (caspases 3 and 7), and a specific caspase-cleavage site within PANX1 was essential for PANX1 function during apoptosis. Expression of truncated PANX1 (at the putative caspase cleavage site) resulted in a constitutively open channel. PANX1 was also important for the 'selective' plasma membrane permeability of early apoptotic cells to specific dyes. Collectively, these data identify PANX1 as a plasma membrane channel mediating the regulated release of find-me signals and selective plasma membrane permeability during apoptosis, and a new mechanism of PANX1 activation by caspases.


Assuntos
Apoptose , Permeabilidade da Membrana Celular/fisiologia , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fagocitose , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Carbenoxolona/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Quimiotaxia/efeitos dos fármacos , Conexinas/antagonistas & inibidores , Conexinas/deficiência , Conexinas/genética , Condutividade Elétrica , Humanos , Células Jurkat , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Técnicas de Patch-Clamp , Fagócitos/citologia , Fagócitos/fisiologia , Fagocitose/efeitos dos fármacos , Uridina Trifosfato/metabolismo
2.
Nature ; 461(7261): 282-6, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19741708

RESUMO

Phagocytic removal of apoptotic cells occurs efficiently in vivo such that even in tissues with significant apoptosis, very few apoptotic cells are detectable. This is thought to be due to the release of 'find-me' signals by apoptotic cells that recruit motile phagocytes such as monocytes, macrophages and dendritic cells, leading to the prompt clearance of the dying cells. However, the identity and in vivo relevance of such find-me signals are not well understood. Here, through several lines of evidence, we identify extracellular nucleotides as a critical apoptotic cell find-me signal. We demonstrate the caspase-dependent release of ATP and UTP (in equimolar quantities) during the early stages of apoptosis by primary thymocytes and cell lines. Purified nucleotides at these concentrations were sufficient to induce monocyte recruitment comparable to that of apoptotic cell supernatants. Enzymatic removal of ATP and UTP (by apyrase or the expression of ectopic CD39) abrogated the ability of apoptotic cell supernatants to recruit monocytes in vitro and in vivo. We then identified the ATP/UTP receptor P2Y(2) as a critical sensor of nucleotides released by apoptotic cells using RNA interference-mediated depletion studies in monocytes, and macrophages from P2Y(2)-null mice. The relevance of nucleotides in apoptotic cell clearance in vivo was revealed by two approaches. First, in a murine air-pouch model, apoptotic cell supernatants induced a threefold greater recruitment of monocytes and macrophages than supernatants from healthy cells did; this recruitment was abolished by depletion of nucleotides and was significantly decreased in P2Y(2)(-/-) (also known as P2ry2(-/-)) mice. Second, clearance of apoptotic thymocytes was significantly impaired by either depletion of nucleotides or interference with P2Y receptor function (by pharmacological inhibition or in P2Y(2)(-/-) mice). These results identify nucleotides as a critical find-me cue released by apoptotic cells to promote P2Y(2)-dependent recruitment of phagocytes, and provide evidence for a clear relationship between a find-me signal and efficient corpse clearance in vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , Apoptose/fisiologia , Fagócitos/citologia , Fagocitose/fisiologia , Transdução de Sinais , Timo/citologia , Uridina Trifosfato/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Fatores Quimiotáticos/metabolismo , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Humanos , Células Jurkat , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fagócitos/efeitos dos fármacos , Fagócitos/metabolismo , Fagocitose/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2 , Receptores Purinérgicos P2/deficiência , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y2 , Transdução de Sinais/efeitos dos fármacos , Uridina Trifosfato/farmacologia
3.
J Biol Chem ; 287(14): 11303-11, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22311983

RESUMO

Pannexin 1 (PANX1) channels mediate release of ATP, a "find-me" signal that recruits macrophages to apoptotic cells; PANX1 activation during apoptosis requires caspase-mediated cleavage of PANX1 at its C terminus, but how the C terminus inhibits basal channel activity is not understood. Here, we provide evidence suggesting that the C terminus interacts with the human PANX1 (hPANX1) pore and that cleavage-mediated channel activation requires disruption of this inhibitory interaction. Basally silent hPANX1 channels localized on the cell membrane could be activated directly by protease-mediated C-terminal cleavage, without additional apoptotic effectors. By serial deletion, we identified a C-terminal region just distal to the caspase cleavage site that is required for inhibition of hPANX1; point mutations within this small region resulted in partial activation of full-length hPANX1. Consistent with the C-terminal tail functioning as a pore blocker, we found that truncated and constitutively active hPANX1 channels could be inhibited, in trans, by the isolated hPANX1 C terminus either in cells or when applied directly as a purified peptide in inside-out patch recordings. Furthermore, using a cysteine cross-linking approach, we showed that relief of inhibition following cleavage requires dissociation of the C terminus from the channel pore. Collectively, these data suggest a mechanism of hPANX1 channel regulation whereby the intact, pore-associated C terminus inhibits the full-length hPANX1 channel and a remarkably well placed caspase cleavage site allows effective removal of key inhibitory C-terminal determinants to activate hPANX1.


Assuntos
Trifosfato de Adenosina/metabolismo , Caspases/metabolismo , Conexinas/química , Conexinas/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Proteólise , Sequência de Aminoácidos , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Porosidade
4.
Circ Res ; 109(1): 80-5, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21546608

RESUMO

RATIONALE: The coordination of vascular smooth muscle cell constriction plays an important role in vascular function, such as regulation of blood pressure; however, the mechanism responsible for vascular smooth muscle cell communication is not clear in the resistance vasculature. Pannexins (Panx) are purine-releasing channels permeable to the vasoconstrictor ATP and thus may play a role in the coordination of vascular smooth muscle cell constriction. OBJECTIVE: We investigated the role of pannexins in phenylephrine- and KCl-mediated constriction of resistance arteries. METHODS AND RESULTS: Western blot, immunohistochemistry, and immunogold labeling coupled to scanning and transmission electron microscopy revealed the presence of Panx1 but not Panx2 or Panx3 in thoracodorsal resistance arteries. Functionally, the contractile response of pressurized thoracodorsal resistance arteries to phenylephrine was decreased significantly by multiple Panx inhibitors (mefloquine, probenecid, and (10)Panx1), ectonucleotidase (apyrase), and purinergic receptor inhibitors (suramin and reactive blue-2). Electroporation of thoracodorsal resistance arteries with either Panx1-green fluorescent protein or Panx1 small interfering RNA showed enhanced and decreased constriction, respectively, in response to phenylephrine. Lastly, the Panx inhibitors did not alter constriction in response to KCl. This result is consistent with coimmunoprecipitation experiments from thoracodorsal resistance arteries, which suggested an association between Panx1 and α1D-adrenergic receptor. CONCLUSIONS: Our data demonstrate for the first time a key role for Panx1 in resistance arteries by contributing to the coordination of vascular smooth muscle cell constriction and possibly to the regulation of blood pressure.


Assuntos
Conexinas/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Vasoconstrição/fisiologia , Animais , Conexinas/análise , Camundongos , Músculo Liso Vascular/química , Músculo Liso Vascular/citologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/química , Proteínas do Tecido Nervoso/análise , Fenilefrina/farmacologia , Cloreto de Potássio/farmacologia , Resistência Vascular , Vasoconstrição/efeitos dos fármacos
5.
J Mol Med (Berl) ; 89(1): 13-22, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20809090

RESUMO

Apoptosis occurs in many tissues, during both normal and pathogenic processes. Normally, apoptotic cells are rapidly cleared, either by neighboring or recruited phagocytes. The prompt clearance of apoptotic cells requires that the apoptotic cells announce their presence through the release of chemotactic factors, known as "find-me" signals, to recruit phagocytes to the site of death, and through the exposure of so-called "eat-me" signals, which are ligands for phagocytic uptake. The importance of prompt apoptotic cell clearance is revealed by findings that decreasing the efficiency of engulfment results in the persistence of apoptotic cells, which is often associated with chronic inflammation and autoimmunity. Additionally, the proper clearance of apoptotic cells is actively anti-inflammatory, which is thought to play a crucial role in immunologic tolerance. Therefore, defects associated with clearance of apoptotic cells may contribute to the pathogenesis of several inflammatory diseases, including autoimmunity and atherosclerosis. Here, we review the role of nucleotides in the apoptotic cell clearance process and discuss their implications for disease pathogenesis.


Assuntos
Apoptose/imunologia , Nucleotídeos/imunologia , Fagocitose/imunologia , Transdução de Sinais/imunologia , Animais , Doenças Autoimunes/fisiopatologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA