Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Hered ; 112(7): 569-574, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34718632

RESUMO

Parthenogenesis is a relatively rare event in birds, documented in unfertilized eggs from columbid, galliform, and passerine females with no access to males. In the critically endangered California condor, parentage analysis conducted utilizing polymorphic microsatellite loci has identified two instances of parthenogenetic development from the eggs of two females in the captive breeding program, each continuously housed with a reproductively capable male with whom they had produced offspring. Paternal genetic contribution to the two chicks was excluded. Both parthenotes possessed the expected male ZZ sex chromosomes and were homozygous for all evaluated markers inherited from their dams. These findings represent the first molecular marker-based identification of facultative parthenogenesis in an avian species, notably of females in regular contact with fertile males, and add to the phylogenetic breadth of vertebrate taxa documented to have reproduced via asexual reproduction.


Assuntos
Fertilidade , Partenogênese , Feminino , Homozigoto , Humanos , Masculino , Partenogênese/genética , Filogenia
3.
Syst Biol ; 60(2): 175-87, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21252386

RESUMO

The monophyletic group Caniformia (dog-like carnivores) in the order Carnivora comprises 9 families. Except for the general consensus for the earliest divergence of Canidae and the grouping of Procyonidae and Mustelidae, conflicting phylogenetic hypotheses exist for the other caniformian families. In the present study, a data set comprising > 22 kb of 22 nuclear intron loci from 16 caniformian species is used to investigate the phylogenetic utility of nuclear introns in resolving the interfamilial relationships of Caniformia. Our phylogenetic analyses support Ailuridae as the sister taxon to a clade containing Procyonidae and Mustelidae, with Mephitinae being the sister taxon to all of them. The unresolved placements of Ursidae and Pinnipeds here emphasize a need to add more data and include more taxa to resolve this problem. The present study not only resolves some of the ambiguous relationships in Caniformia phylogeny but also shows that the noncoding nuclear markers can offer powerful complementary data for estimating the species tree. None of the newly developed introns here have previously been used for phylogeny reconstruction, thus increasing the spectrum of molecular markers available to mammalian systematics. Interestingly, all the newly developed intron data partitions exhibit intraindividual allele heterozygotes (IIAHs). There are 115 cases of IIAHs in total. The incorporation of IIAHs into phylogenetic analysis not only provides insights into the interfamilial relationships of Caniformia but also identifies two potential hybridization events occurred within Ursidae and Otariidae, respectively. Finally, the powers and pitfalls of phylogenetics using nuclear introns as markers are discussed in the context of Caniformia phylogeny.


Assuntos
Carnívoros/classificação , Carnívoros/genética , Núcleo Celular/genética , Íntrons , Filogenia , Animais , Heterozigoto , Humanos
4.
Animals (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36496789

RESUMO

The development of a linkage map is an important component for promoting genetic and genomic studies in California condors, an endangered New World vulture species. Using a set of designed anonymous microsatellite markers, we genotyped a reference condor population involving 121 individuals. After marker validation and genotype filtering, the genetic linkage analysis was performed using 123 microsatellite loci. This resulted in the identification of 15 linkage groups/subgroups that formed a first-generation condor genetic map, while no markers linked to a lethal chondrodystrophy mutation were found. A panel of polymorphic markers that is instrumental in molecular parentage diagnostics and other genetic studies in the California condor was selected. Further condor conservation genomics research will be focused on updating the linkage map and integrating it with cytogenetic and BAC-based physical maps and ultimately with the genome sequence assembly.

5.
BMC Genomics ; 10 Suppl 2: S10, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19607652

RESUMO

BACKGROUND: Genomic studies in non-domestic avian models, such as the California condor and white-throated sparrow, can lead to more comprehensive conservation plans and provide clues for understanding mechanisms affecting genetic variation, adaptation and evolution.Developing genomic tools and resources including genomic libraries and a genetic map of the California condor is a prerequisite for identification of candidate loci for a heritable embryonic lethal condition. The white-throated sparrow exhibits a stable genetic polymorphism (i.e. chromosomal rearrangements) associated with variation in morphology, physiology, and behavior (e.g., aggression, social behavior, sexual behavior, parental care).In this paper we outline the utility of these species as well as report on recent advances in the study of their genomes. RESULTS: Genotyping of the condor resource population at 17 microsatellite loci provided a better assessment of the current population's genetic variation. Specific New World vulture repeats were found in the condor genome. Using condor BAC library and clones, chicken-condor comparative maps were generated. A condor fibroblast cell line transcriptome was characterized using the 454 sequencing technology.Our karyotypic analyses of the sparrow in combination with other studies indicate that the rearrangements in both chromosomes 2m and 3a are complex and likely involve multiple inversions, interchromosomal linkage, and pleiotropy. At least a portion of the rearrangement in chromosome 2m existed in the common ancestor of the four North American species of Zonotrichia, but not in the one South American species, and that the 2m form, originally thought to be the derived condition, might actually be the ancestral one. CONCLUSION: Mining and characterization of candidate loci in the California condor using molecular genetic and genomic techniques as well as linkage and comparative genomic mapping will eventually enable the identification of carriers of the chondrodystrophy allele, resulting in improved genetic management of this disease.In the white-throated sparrow, genomic studies, combined with ecological data, will help elucidate the basis of genic selection in a natural population. Morphs of the sparrow provide us with a unique opportunity to study intraspecific genomic differences, which have resulted from two separate yet linked evolutionary trajectories. Such results can transform our understanding of evolutionary and conservation biology.


Assuntos
Conservação dos Recursos Naturais , Genômica , Aves Predatórias/genética , Pardais/genética , Animais , Cromossomos Artificiais Bacterianos , Evolução Molecular , Feminino , Biblioteca Gênica , Ligação Genética , Variação Genética , Genética Populacional , Cariotipagem , Repetições de Microssatélites , Análise de Sequência de DNA
6.
Gigascience ; 8(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649288

RESUMO

Background: The gemsbok (Oryx gazella) is one of the largest antelopes in Africa. Gemsbok are heterothermic and thus highly adapted to live in the desert, changing their feeding behavior when faced with extreme drought and heat. A high-quality genome sequence of this species will assist efforts to elucidate these and other important traits of gemsbok and facilitate research on conservation efforts. Findings: Using 180 Gbp of Illumina paired-end and mate-pair reads, a 2.9 Gbp assembly with scaffold N50 of 1.48 Mbp was generated using SOAPdenovo. Scaffolds were extended using Chicago library sequencing, which yielded an additional 114.7 Gbp of DNA sequence. The HiRise assembly using SOAPdenovo + Chicago library sequencing produced a scaffold N50 of 47 Mbp and a final genome size of 2.9 Gbp, representing 90.6% of the estimated genome size and including 93.2% of expected genes according to Benchmarking Universal Single-Copy Orthologs analysis. The Reference-Assisted Chromosome Assembly tool was used to generate a final set of 47 predicted chromosome fragments with N50 of 86.25 Mbp and containing 93.8% of expected genes. A total of 23,125 protein-coding genes and 1.14 Gbp of repetitive sequences were annotated using de novo and homology-based predictions. Conclusions: Our results provide the first high-quality, chromosome-scale genome sequence assembly for gemsbok, which will be a valuable resource for studying adaptive evolution of this species and other ruminants.


Assuntos
Antílopes/genética , Genoma , Animais , Feminino , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA
7.
Gigascience ; 8(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31367745

RESUMO

BACKGROUND: The Masai giraffe (Giraffa camelopardalis tippelskirchi) is the largest-bodied giraffe and the world's tallest terrestrial animal. With its extreme size and height, the giraffe's unique anatomical and physiological adaptations have long been of interest to diverse research fields. Giraffes are also critical to ecosystems of sub-Saharan Africa, with their long neck serving as a conduit to food sources not shared by other herbivores. Although the genome of a Masai giraffe has been sequenced, the assembly was highly fragmented and suboptimal for genome analysis. Herein we report an improved giraffe genome assembly to facilitate evolutionary analysis of the giraffe and other ruminant genomes. FINDINGS: Using SOAPdenovo2 and 170 Gbp of Illumina paired-end and mate-pair reads, we generated a 2.6-Gbp male Masai giraffe genome assembly, with a scaffold N50 of 3 Mbp. The incorporation of 114.6 Gbp of Chicago library sequencing data resulted in a HiRise SOAPdenovo + Chicago assembly with an N50 of 48 Mbp and containing 95% of expected genes according to BUSCO analysis. Using the Reference-Assisted Chromosome Assembly tool, we were able to order and orient scaffolds into 42 predicted chromosome fragments (PCFs). Using fluorescence in situ hybridization, we placed 153 cattle bacterial artificial chromosomes onto giraffe metaphase spreads to assess and assign the PCFs on 14 giraffe autosomes and the X chromosome resulting in the final assembly with an N50 of 177.94 Mbp. In this assembly, 21,621 protein-coding genes were identified using both de novo and homology-based predictions. CONCLUSIONS: We have produced the first chromosome-scale genome assembly for a Giraffidae species. This assembly provides a valuable resource for the study of artiodactyl evolution and for understanding the molecular basis of the unique adaptive traits of giraffes. In addition, the assembly will provide a powerful resource to assist conservation efforts of Masai giraffe, whose population size has declined by 52% in recent years.


Assuntos
Cromossomos de Mamíferos , Genoma , Genômica , Girafas/genética , Animais , Biologia Computacional/métodos , Evolução Molecular , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Cariotipagem , Anotação de Sequência Molecular , Filogenia
8.
Science ; 364(6446)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31221828

RESUMO

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants.


Assuntos
Genoma , Ruminantes/classificação , Ruminantes/genética , Animais , Evolução Molecular , Filogenia , Análise de Sequência de DNA
9.
Gigascience ; 7(2)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29267854

RESUMO

Background: Milu, also known as Père David's deer (Elaphurus davidianus), was widely distributed in East Asia but recently experienced a severe bottleneck. Only 18 survived by the end of the 19th century, and the current population of 4500 individuals was propagated from just 11 kept by the 11th British Duke of Bedford. This species is known for its distinguishable appearance, the driving force behind which is still a mystery. To aid efforts to explore these phenomena, we constructed a draft genome of the species. Findings: In total, we generated 321.86 gigabases (Gb) of raw DNA sequence from whole-genome sequencing of a male milu deer using an Illumina HiSeq 2000 platform. Assembly yielded a final genome with a scaffold N50 size of 3.03 megabases (Mb) and a total length of 2.52 Gb. Moreover, we identified 20 125 protein-coding genes and 988.1 Mb of repetitive sequences. In addition, homology-based searches detected 280 rRNA, 1335 miRNA, 1441 snRNA, and 893 tRNA sequences in the milu genome. The divergence time between E. davidianus and Bos taurus was estimated to be about 28.20 million years ago (Mya). We identified 167 species-specific genes and 293 expanded gene families in the milu lineage. Conclusions: We report the first reference genome of milu, which will provide a valuable resource for studying the species' demographic history of severe bottleneck and the genetic mechanism(s) of special phenotypic evolution.


Assuntos
Evolução Biológica , Mapeamento Cromossômico/métodos , Cervos/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Bovinos , Cervos/classificação , Masculino , MicroRNAs/classificação , MicroRNAs/genética , Fases de Leitura Aberta , Filogenia , Proteínas/classificação , Proteínas/genética , RNA Ribossômico/classificação , RNA Ribossômico/genética , RNA Nuclear Pequeno/classificação , RNA Nuclear Pequeno/genética , RNA de Transferência/classificação , RNA de Transferência/genética , Sequenciamento Completo do Genoma
10.
Mol Ecol Resour ; 9(5): 1412-4, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21564923

RESUMO

Twenty-three polymorphic microsatellite markers were identified and characterized for Cyclura pinguis, a critically endangered species of lizard (Sauria: Iguanidae) native to Anegada Island in the British Virgin Islands. We examined variation at these loci for 39 C. pinguis, finding up to five alleles per locus and an average expected heterozygosity of 0.55. Allele frequency estimates for these microsatellite loci will be used to characterize genetic diversity of captive and wild C. pinguis populations and to estimate relatedness among adult iguanas at the San Diego Zoo that form the nucleus of a captive breeding programme for this critically endangered species.

11.
Hum Mol Genet ; 15(13): 2031-7, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16687440

RESUMO

Sonic Hedgehog (SHH) is one of the most intensively studied genes in developmental biology. It is a highly conserved gene, found in species as diverse as arthropods and mammals. The mammalian SHH encodes a signaling molecule that plays a central role in developmental patterning, especially of the nervous system and the skeletal system. Here, we show that the molecular evolution of SHH is markedly accelerated in primates relative to other mammals. We further show that within primates, the acceleration is most prominent along the lineage leading to humans. Finally, we show that the acceleration in the lineage leading to humans is coupled with signatures of adaptive evolution. In particular, the lineage leading to humans is characterized by a rampant and statistically highly non-random gain of serines and threonines, residues that are potential substrates of post-translational modifications. This suggests that SHH might have evolved more complex post-translational regulation in the lineage leading to humans. Collectively, these findings implicate SHH as a potential contributor to the evolution of primate- or human-specific morphological traits in the nervous and/or skeletal systems and provide the impetus for additional studies aimed at identifying the primate- or human-specific functions of this key development gene.


Assuntos
Evolução Molecular , Primatas/genética , Transativadores/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Proteínas Hedgehog , Humanos , Modelos Genéticos , Filogenia , Polimorfismo Genético
12.
Mol Phylogenet Evol ; 35(1): 117-26, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15737586

RESUMO

Short INterspersed Elements (SINEs) make very useful phylogenetic markers because the integration of a particular element at a location in the genome is irreversible and of known polarity. These attributes make analysis of SINEs as phylogenetic characters an essentially homoplasy-free affair. Alu elements are primate-specific SINEs that make up a large portion of the human genome and are also widespread in other primates. Using a combination wet-bench and computational approach we recovered 190 Alu insertions, 183 of which are specific to the genomes of nine New World primates. We used these loci to investigate branching order and have produced a cladogram that supports a sister relationship between Atelidae (spider, woolly, and howler monkeys) and Cebidae (marmosets, tamarins, and owl monkeys) and then the joining of this two family clade to Pitheciidae (titi and saki monkeys). The data support these relationships with a homoplasy index of 0.00. In this study, we report one of the largest applications of SINE elements to phylogenetic analysis to date, and the results provide a robust molecular phylogeny for platyrrhine primates.


Assuntos
Elementos Alu , Cebidae/genética , Filogenia , Animais , Sequência de Bases , Primers do DNA , Humanos , Reação em Cadeia da Polimerase
13.
Mol Phylogenet Evol ; 37(3): 872-80, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15936216

RESUMO

SINEs (Short INterspersed Elements) are a class of non-autonomous mobile elements that are <500 bp in length and have no open reading frames. Individual SINE elements are essentially homoplasy free with known ancestral states, making them useful genetic systems for phylogenetic studies. Alu elements are the most successful SINE in primate genomes and have been utilized for resolving primate phylogenetic relationships and human population genetics. However, no Alu based phylogenetic analysis has yet been performed to resolve relationships among Old World monkeys. Using both a computational approach and polymerase chain reaction display methodology, we identified 285 new Alu insertions from sixteen Old World monkey taxa that were informative at various levels of catarrhine phylogeny. We have utilized these elements along with 12 previously reported loci to construct a phylogenetic tree of the selected taxa. Relationships among all major clades are in general agreement with other molecular and morphological data sets but have stronger statistical support.


Assuntos
Cercopithecidae/genética , Filogenia , Elementos Alu/genética , Animais , Sequência de Bases , Primers do DNA , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA
14.
Genome Res ; 13(7): 1619-30, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12840040

RESUMO

Although much is known about genetic variation in human and African great ape (chimpanzee, bonobo, and gorilla) genomes, substantially less is known about variation in gene-expression profiles within and among these species. This information is necessary for defining transcriptional regulatory networks that contribute to complex phenotypes unique to humans or the African great apes. We took a systematic approach to this problem by investigating gene-expression profiles in well-defined cell populations from humans, bonobos, and gorillas. By comparing these profiles from 18 human and 21 African great ape primary fibroblast cell lines, we found that gene-expression patterns could predict the species, but not the age, of the fibroblast donor. Several differentially expressed genes among human and African great ape fibroblasts involved the extracellular matrix, metabolic pathways, signal transduction, stress responses, as well as inherited overgrowth and neurological disorders. These gene-expression patterns could represent molecular adaptations that influenced the development of species-specific traits in humans and the African great apes.


Assuntos
Fibroblastos/química , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Hominidae/genética , África , Animais , Northern Blotting/métodos , Northern Blotting/estatística & dados numéricos , Química Encefálica/genética , Células Cultivadas , Mapeamento Cromossômico/métodos , Mapeamento Cromossômico/estatística & dados numéricos , Análise por Conglomerados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Gorilla gorilla/genética , Humanos , Pan paniscus/genética , Pan troglodytes/genética , Análise de Sequência de RNA/métodos , Análise de Sequência de RNA/estatística & dados numéricos , Transcrição Gênica/genética
15.
Mamm Genome ; 15(6): 492-502, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15181541

RESUMO

The human nuclear gene for the catalytic subunit of mitochondrial DNA polymerase gamma ( POLG) contains within its coding region a CAG microsatellite encoding a polyglutamine repeat. Previous studies demonstrated an association between length variation at this repeat and male infertility, suggesting a mechanism whereby the prevalent (CAG)(10) allele, which occurs at a frequency of >80% in different populations, could be maintained by selection. Sequence analysis of the POLG CAG microsatellite region of more than 1000 human chromosomes reveals that virtually all allelic variation at the locus is accounted for by length variation of the CAG repeat. Analysis of POLG from African great apes shows that a prevalent length allele is present in each species, although its exact length is species-specific. In common chimpanzee ( Pan troglodytes) a number of different sequence variants contribute to the prevalent length allele, strongly supporting the idea that the length of the POLG microsatellite region, rather than its exact nucleotide or amino acid sequence, is what is maintained. Analysis of POLG in other primates indicates that the repeat has expanded from a shorter, glutamine-rich sequence, present in the common ancestor of Old and New World monkeys.


Assuntos
DNA Polimerase Dirigida por DNA/genética , Hominidae/genética , Repetições de Trinucleotídeos , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Polimerase gama , Haplorrinos/genética , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA