RESUMO
In eukaryotic cells, N6-methyladenosine (m6A) is the most prevalent RNA epigenetic modification that plays crucial roles in multiple biological processes. Nevertheless, the functions and regulatory mechanisms of m6A in phytopathogenic fungi are poorly understood. Here, we showed that CpMTA1, an m6A methyltransferase in Cryphonectria parasitica, plays a crucial role in fungal phenotypic traits, virulence, and stress tolerance. Furthermore, the acid phosphatase gene CpAphA was implicated to be a target of CpMTA1 by integrated analysis of m6A-seq and RNA-seq, as in vivo RIP assay data confirmed that CpMTA1 directly interacts with CpAphA mRNA. Deletion of CpMTA1 drastically lowered the m6A level of CpAphA and reduced its mRNA expression. Moreover, we found that an m6A reader protein CpYTHDF1 recognizes CpAphA mRNA and increases its stability. Typically, the levels of CpAphA mRNA and protein exhibited a positive correlation with CpMTA1 and CpYTHDF1. Importantly, site-specific mutagenesis demonstrated that the m6A sites, A1306 and A1341, of CpAphA mRNA are important for fungal phenotypic traits and virulence in C. parasitica. Together, our findings demonstrate the essential role of the m6A methyltransferase CpMTA1 in C. parasitica, thereby advancing our understanding of fungal gene regulation through m6A modification.
Assuntos
Adenosina , Ascomicetos , Proteínas Fúngicas , Metiltransferases , Doenças das Plantas , Estabilidade de RNA , Adenosina/análogos & derivados , Adenosina/metabolismo , Metiltransferases/metabolismo , Metiltransferases/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Virulência/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
A major threat to rice production is the disease epidemics caused by insect-borne viruses that emerge and re-emerge with undefined origins. It is well known that some human viruses have zoonotic origins from wild animals. However, it remains unknown whether native plants host uncharacterized endemic viruses with spillover potential to rice (Oryza sativa) as emerging pathogens. Here, we discovered rice tiller inhibition virus (RTIV), a novel RNA virus species, from colonies of Asian wild rice (O. rufipogon) in a genetic reserve by metagenomic sequencing. We identified the specific aphid vector that is able to transmit RTIV and found that RTIV would cause low-tillering disease in rice cultivar after transmission. We further demonstrated that an infectious molecular clone of RTIV initiated systemic infection and causes low-tillering disease in an elite rice variety after Agrobacterium-mediated inoculation or stable plant transformation, and RTIV can also be transmitted from transgenic rice plant through its aphid vector to cause disease. Finally, global transcriptome analysis indicated that RTIV may disturb defense and tillering pathway to cause low tillering disease in rice cultivar. Thus, our results show that new rice viral pathogens can emerge from native habitats, and RTIV, a rare aphid-transmitted rice viral pathogen from native wild rice, can threaten the production of rice cultivar after spillover.
Assuntos
Afídeos , Oryza , Vírus , Animais , Humanos , Oryza/genética , Afídeos/genética , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , Vírus/genética , Doenças das PlantasRESUMO
Pandemics originating from zoonotic viruses have posed significant threats to human health and agriculture. Recent discoveries have revealed that wild-rice plants also harbour viral pathogens capable of severely impacting rice production, a cornerstone food crop. In this study, we conducted virome analysis on ~1000 wild-rice individual colonies and discovered a novel single-strand positive-sense RNA virus prevalent in these plants. Through comprehensive genomic characterization and comparative sequence analysis, this virus was classified as a new species in the genus Polerovirus, designated Rice less tiller virus (RLTV). Our investigations elucidated that RLTV could be transmitted from wild rice to cultivated rice via a specific insect vector, the aphid Rhopalosiphum padi, causing less tiller disease symptoms in rice plants. We generated an infectious cDNA clone for RLTV and demonstrated systemic infection of rice cultivars and induction of severe disease symptoms following mechanical inoculation or stable genetic transformation. We further illustrated transmission of RLTV from stable transgenic lines to healthy rice plants by the aphid vector, leading to the development of disease symptoms. Notably, our database searches showed that RLTV and another polerovirus isolated from a wild plant species are widely circulating not only in wild rice but also cultivated rice around the world. Our findings provide strong evidence for a wild plant origin for rice viruses and underscore the imminent threat posed by aphid-transmitted rice Polerovirus to rice cultivar.
RESUMO
Xanthomonas spp. are plant pathogens known for significantly impacting crop yields. Among them, Xanthomonas albilineans (Xal) is notable for colonizing the xylem and causing sugarcane leaf scald disease. This study employed homologous recombination to mutate quorum sensing (QS) regulatory genes (rpf) to investigate their role in Xal pathogenicity. Deletions of rpfF (ΔrpfF), rpfC (ΔrpfC), and rpfG (ΔrpfG) led to reduced swarming, growth, and virulence. However, DSF supplementation restored swarming and growth in the ΔrpfF mutant. Deleting rpfC, rpfG, and rpfF also reduced twitching motility and affected Type IV Pilus (T4P) expression. Transcriptomic analysis revealed that ΔrpfF positively regulates flagellar genes. DSF supplementation in ΔrpfF (ΔrpfF-DSF) modulated the expression of flagellar, chemotaxis, and T4P genes. These findings elucidate the DSF-mediated swarming pathway in Xal and provide valuable insights into its regulatory mechanisms.
RESUMO
Sugarcane smut caused by Sporisorium scitamineum represents the most destructive disease in the sugarcane industry, causing host hormone disruption and producing a black whip-like sorus in the apex of the stalk. In this study, the gibberellin metabolic pathway was found to respond to S. scitamineum infection, and the contents of bioactive gibberellins were significantly reduced in the leaves of diseased plants. The gibberellin receptor gene ScGID1 was identified and significantly downregulated. ScGID1 localized in both the nucleus and cytoplasm and had the highest expression level in the leaves. Eight proteins that interact with ScGID1 were screened out using a yeast two-hybrid assay. Novel DELLA proteins named ScGAI1a and ScGA20ox2, key enzymes in GA biosynthesis, were both found to interact with ScGID1 in a gibberellin-independent manner. Transcription factor trapping with a yeast one-hybrid system identified 50 proteins that interacted with the promoter of ScGID1, among which ScS1FA and ScPLATZ inhibited ScGID1 transcription, while ScGDSL promoted transcription. Overexpression of ScGID1 in transgenic Nicotiana benthamiana plants could increase plant height and promote flowering. These results not only contribute to improving our understanding of the metabolic regulatory network of sugarcane gibberellin but also expand our knowledge of the interaction between sugarcane and pathogens.
Assuntos
Regulação da Expressão Gênica de Plantas , Giberelinas , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genéticaRESUMO
Inland lakes are crucial for processing, storing, and releasing carbon dioxide (CO2), and they play a significant role in the global carbon cycle and climate change. Studies have shown that inland lakes are mostly supersaturated in CO2, making them significant sources to the atmosphere. However, estimating CO2 fluxes from inland lakes is still challenging due to large variations in surface water CO2 partial pressure (pCO2). Submerged aquatic vegetation (SAV) is widely found in aquatic ecosystems, especially in shallow lakes. However, their role in lake-wide carbonate chemistry has not been thoroughly investigated. Accurately measuring air-water CO2 exchange and understanding the environmental factors that control these fluxes in vegetated ecosystems are essential for reducing uncertainties in global CO2 emission estimates. In this study, high-resolution (3-h interval) field measurements were made along the nearshore of eastern Lake Taihu during the SAV growing seasons to examine their effects on surface water pCO2 and air-water exchange. Our results showed evident daily variations in water chemistry and air-water fluxes. Daytime air-water CO2 exchange switched from sinks in summer to sources in autumn. The vegetation sites were observed to be strong CO2 sources consistently at night. The density of aquatic vegetation was found to be positively correlated with the daily range of pCO2, highlighting their role in regulating surface water carbonate chemistry. Negative correlations were found between water depth and surface pCO2. These results highlight the importance of aquatic vegetation and daily variations in reducing uncertainties in carbon budgets of shallow aquatic systems.
RESUMO
Pokkah boeng disease (PBD), a sugarcane foliar disease, is caused by various Fusarium spp. within the Fusarium fujikuroi species complex (FFSC). In the current study, we investigated the diversity of Fusarium spp. associated with PBD in China. In total, 320 leaf samples displaying PBD symptoms were collected over 10 consecutive years (2012 to 2021), during winter and summer, from six various sugarcane-growing regions (Guangxi, Yunnan, Guangdong, Zhejiang, Hainan, and Fujian) in China. Phylogenetic analysis of Fusarium spp. was reconstructed using translation elongation factor 1-α, and DNA-directed RNA polymerase II largest subunit and second-largest subunit multigene sequences. Evolutionary studies of these regions categorized the isolates into four FFSC species (F. sacchari, F. proliferatum, F. verticillioides, and F. andiyazi). The identified isolates, which developed irregular necrotic patches and rotting symptoms on the sugarcane plant after approximately 30 days were tested for their pathogenicity. Symptoms that appeared during pathogenicity testing were consistent with those observed under field conditions. Each strain of the pathogenic Fusarium spp. belonged to different vegetative compatibility groups (VCGs), and there was no affinity between VCGs. Our results contribute to understanding FFSC and accurately identifying Fusarium spp. associated with the sugarcane crop.
Assuntos
Fusarium , Saccharum , Filogenia , Virulência/genética , China , Grão Comestível , Variação GenéticaRESUMO
BACKGROUND: When plants are subjected to cold stress, they undergo a series of molecular and physiological changes to protect themselves from injury. Indica cultivars can usually withstand only mild cold stress in a relatively short period. Hormone-mediated defence response plays an important role in cold stress. Weighted gene co-expression network analysis (WGCNA) is a very useful tool for studying the correlation between genes, identifying modules with high phenotype correlation, and identifying Hub genes in different modules. Many studies have elucidated the molecular mechanisms of cold tolerance in different plants, but little information about the recovery process after cold stress is available. RESULTS: To understand the molecular mechanism of cold tolerance in rice, we performed comprehensive transcriptome analyses during cold treatment and recovery stage in two cultivars of near-isogenic lines (9311 and DC907). Twelve transcriptomes in two rice cultivars were determined. A total of 2509 new genes were predicted by fragment splicing and assembly, and 7506 differentially expressed genes were identified by pairwise comparison. A total of 26 modules were obtained by expression-network analysis, 12 of which were highly correlated with cold stress or recovery treatment. We further identified candidate Hub genes associated with specific modules and analysed their regulatory relationships based on coexpression data. Results showed that various plant-hormone regulatory genes acted together to protect plants from physiological damage under short-term low-temperature stress. We speculated that this may be common in rice. Under long-term cold stress, rice improved the tolerance to low-temperature stress by promoting autophagy, sugar synthesis, and metabolism. CONCLUSION: Through WGCNA analysis at the transcriptome level, we provided a potential regulatory mechanism for the cold stress and recovery of rice cultivars and identified candidate central genes. Our findings provided an important reference for the future cultivation of rice strains with good tolerance.
Assuntos
Oryza , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Oryza/metabolismoRESUMO
BACKGROUND: Xanthomonas is a genus of gram-negative bacterium containing more than 35 species. Among these pathogenic species, Xanthomonas albilineans (Xal) is of global interest, responsible for leaf scald disease in sugarcane. Another notable Xanthomonas species is Xanthomonas sachari (Xsa), a sugarcane-associated agent of chlorotic streak disease. RESULT: The virulence of 24 Xanthomonas strains was evaluated by disease index (DI) and Area Under Disease Progress Curve (AUDPC) in the susceptible inoculated plants (GT 46) and clustered into three groups of five highly potent, seven mild virulent, and twelve weak virulent strains. The highly potent strain (X. albilineans, Xal JG43) and its weak virulent related strain (X. sacchari, Xsa DD13) were sequenced, assembled, and annotated in the circular genomes. The genomic size of JG43 was smaller than that of DD13. Both strains (JG43 and DD13) lacked a Type III secretory system (T3SS) and T6SS. However, JG43 possessed Salmonella pathogenicity island-1 (SPI-1). More pathogen-host interaction (PHI) genes and virulent factors in 17 genomic islands (GIs) were detected in JG43, among which six were related to pathogenicity. Albicidin and a two-component system associated with virulence were also detected in JG43. Furthermore, 23 Xanthomonas strains were sequenced and classified into three categories based on Single Nucleotide Polymorphism (SNP) mutation loci and pathogenicity, using JG43 as a reference genome. Transitions were dominant SNP mutations, while structural variation (SV) is frequent intrachromosomal rearrangement (ITX). Two essential genes (rpfC/rpfG) of the two-component system and another gene related to SNP were mutated to understand their virulence effect. The mutation of rpfG resulted in a decrease in pathogenicity. CONCLUSION: These findings revealed virulence of 24 Xanthomonas strains and variations by 23 Xanthomonas strains. We sequenced, assembled, and annotated the circular genomes of Xal JG43 and Xsa DD13, identifying diversity detected by pathogenic factors and systems. Furthermore, complete genomic sequences and sequenced data will provide a theoretical basis for identifying pathogenic factors responsible for sugarcane leaf scald disease.
Assuntos
Saccharum , Xanthomonas , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Saccharum/microbiologia , Virulência/genética , Fatores de Virulência/genética , Xanthomonas/genéticaRESUMO
DELLA proteins are important repressors of gibberellin signaling, regulating plant development and defense responses through crosstalk with various phytohormones. Sugarcane ScGAI encodes a DELLA protein that regulates culm development. However, it is unclear which transcription factors mediate the transcription of ScGAI. Here, we identified two different ScGAI promoter sequences that cooperatively regulate ScGAI transcription. We also identified a nuclear-localized AP2 family transcription factor, ScAIL1, which inhibits the transcription of ScGAI by directly binding to two ScGAI promoters. ScAIL1 was expressed in all sugarcane tissues tested and was induced by gibberellin and various stressors, including NaCl, polyethylene glycol, and pathogenic fungi and bacteria. Overexpression of ScAIL1 in rice significantly improved resistance to bacterial blight and rice blast, while reducing growth and development. In addition, several genes associated with stress responses were significantly up-regulated in transgenic rice overexpressing ScAIL1. Endogenous phytohormone content and expression analysis further revealed that ScAIL1-overexpressing lines improved resistance to bacterial blight and rice blast instead of promoting growth, and that this response was associated with increased jasmonic acid synthesis and gibberellin inactivation. These results provide molecular evidence that the role of ScAIL1 in the plant defense response is related to jasmonic acid and gibberellin signaling.
Assuntos
Oryza , Saccharum , Giberelinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saccharum/genética , Saccharum/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Plantas/metabolismo , Oryza/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismoRESUMO
The hormone gibberellin (GA) is crucial for internode elongation in sugarcane. DELLA proteins are critical negative regulators of the GA signaling pathway. ScGAI encodes a DELLA protein that was previously implicated in the regulation of sugarcane culm development. Here, we characterized ScGAI-like (ScGAIL) in sugarcane, which lacked the N-terminal region but was otherwise homologous to ScGAI. ScGAIL differed from ScGAI in its chromosomal location, expression patterns, and cellular localization. Although transgenic Arabidopsis overexpressing ScGAIL were insensitive to GAs, GA synthesis was affected in these plants, suggesting that ScGAIL disrupted the GA signaling pathway. After GA treatment, the expression patterns of GA-associated genes differed between ScGAIL-overexpressing and wild-type Arabidopsis, and the degradation of AtDELLA proteins in transgenic lines was significantly inhibited compared with wild-type lines. A sugarcane GID1 gene (ScGID1) encoding a putative GA receptor was isolated and interacted with ScGAIL in a GA-independent manner. Five ScGAIL-interacting proteins were verified by yeast two-hybrid assays, and only one interacted with ScGAI. Therefore, ScGAIL may inhibit plant growth by modulating the GA signaling pathway.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Saccharum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/metabolismo , Transdução de Sinais/genéticaRESUMO
Autophagy is an evolutionarily ancient process wherein cells are able to break down intracellular contents to support normal physiology and development. Autophagosome formation is regulated by several different proteins, including the key cysteine protease Atg4. The contribution of Atg4 protein in the pathogenic fungus Cryphonectria parasitica, which causes blight in chestnut plants, has not been completely understood. In this context, we aimed to investigate the role of Atg4 during autophagy formation and their contribution to nonautophagic events in C. parasitica. By complementation assay, we determined that the CpAtg4 gene from C. parasitica was able to functionally complement the deletion of yeast Atg4. Using a yeast two-hybrid assay system, we confirmed that CpAtg4 and CpAtg8 directly interact with one another, and amino acids 377 to 409 of CpAtg4 were identified as being responsible for its binding with CpAtg8. The deletion mutant of CpAtg4 did not demonstrate positive monodansylcadaverine staining, which indicated that CpAtg4 is required for autophagy in C. parasitica. Moreover, the ΔCpAtg4 strain exhibited a decrease in aerial hyphae formation and sporulation, and reduction in virulence on apple and chestnut stem. The ΔCpAtg4 strains were also more sensitive to H2O2 and Congo red-induced stress. We further determined that amino acids 377 to 409 of CpAtg4 were essential for the function of CpAtg4 in vivo. Together, our findings indicated that CpAtg4 is required for the autophagy formation, fungal phenotypic traits, stress tolerance, and virulence in C. parasitica.
Assuntos
Ascomicetos , Peróxido de Hidrogênio , Ascomicetos/genética , Autofagia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/microbiologia , Virulência/genéticaRESUMO
BACKGROUND: The rapid identification and isolation of individuals infected with SARS-CoV-2 are fundamental countermeasures for the efficient control of the COVID-19 pandemic, which has affected millions of people around the world. Real-time RT-PCR is one of the most commonly applied reference methods for virus detection, and the use of pooled testing has been proposed as an effective way to increase the throughput of routine diagnostic tests. However, the clinical applicability of different types of real-time RT-PCR tests in a given group size remains inconclusive due to inconsistent regional disease prevalence and test demands. METHODS: In this study, the performance of one dual-target conventional and two point-of-care real-time RT-PCR tests in a 5-specimen pooled testing strategy for the detection of SARS-COV-2 was evaluated. RESULTS: We demonstrated the proof of concept that all of these real-time RT-PCR tests could feasibly detect SARS-CoV-2 from nasopharyngeal and oropharyngeal specimens that contain viral RNA loads in the range of 3.48 × 105 to 3.42 × 102 copies/ml through pooled testing in a group size of 5 with overall positive percent agreement (pooling vs. individual testing) ranging from 100% to 93.75%. Furthermore, the two POC real-time RT-PCR tests exhibited comparable sensitivity to that of the dual-target conventional one when clinical specimens were tested individually. CONCLUSION: Our findings support the feasibility of using real-time RT-PCR tests developed as a variety of platforms in routine laboratory detection of suspected COVID-19 cases through a pooled testing strategy that is beneficial to increasing the daily diagnostic capacity.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e EspecificidadeRESUMO
Dirigent proteins (DIRs) are known to function in lignin biogenesis and to be involved in stress resistance in plants. However, the sugarcane DIRs have not been functionally characterized. In this study, we investigated the DIR-protein-encoding genes in Saccharum spp. (ScDIR) by screening collections of sugarcane databases, monitoring the responses of these genes to drought stress by real-time quantitative PCR, and identifying their heterologous expression in tobacco. Of the 64 ScDIRs identified, four belonging to the DIR-b/d (ScDIR5 and ScDIR11) and DIR-c (ScDIR7 and ScDIR40) subfamilies showed a significant transcriptional response when subjected to drought stress. ScDIR5, ScDIR7, and ScDIR11 are localized in the cell membrane, whereas ScDIR40 is found in the cell wall. The overexpression of these ScDIR genes in tobacco generally increased the drought tolerance of the transgenic lines, with ScDIR7 conferring the highest degree of drought tolerance. The characterization of the physiological and biochemical indicators (superoxide dismutase, catalase, malondialdehyde, and H2O2) confirmed that the ScDIR-overexpressing lines outperformed the wild type. These results demonstrated that specific ScDIRs in sugarcane respond and contribute to tolerance of drought stress, shedding light on potential means of improving drought tolerance in this crop.
Assuntos
Nicotiana , Saccharum , Secas , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Saccharum/metabolismo , Nicotiana/metabolismoRESUMO
High ploids of the sugarcane nuclear genome limit its genomic studies, whereas its chloroplast genome is small and conserved, which is suitable for phylogenetic studies and molecular marker development. Here, we applied whole genome sequencing technology to sequence and assemble chloroplast genomes of eight species of the 'Saccharum Complex', and elucidated their sequence variations. In total, 19 accessions were sequenced, and 23 chloroplast genomes were assembled, including 6 species of Saccharum (among them, S. robustum, S. sinense, and S. barberi firstly reported in this study) and 2 sugarcane relative species, Tripidium arundinaceum and Narenga porphyrocoma. The plastid phylogenetic signal demonstrated that S. officinarum and S. robustum shared a common ancestor, and that the cytoplasmic origins of S. sinense and S. barberi were much more ancient than the S. offcinarum/S. robustum linage. Overall, 14 markers were developed, including 9 InDel markers for distinguishing Saccharum from its relative species, 4 dCAPS markers for distinguishing S. officinarum from S. robustum, and 1 dCAPS marker for distinguishing S. sinense and S. barberi from other species. The results obtained from our studies will contribute to the understanding of the classification and plastome evolution of Saccharinae, and the molecular markers developed have demonstrated their highly discriminatory power in Saccharum and relative species.
Assuntos
Genoma de Cloroplastos , Saccharum , Genômica/métodos , Filogenia , Poaceae/genética , Saccharum/genéticaRESUMO
Sugarcane pokkah boeng disease (PBD) is emerging as a prevalent foliar disease in China. This airborne disease is caused by the Fusarium species complex. To investigate the diversity and evolution of Fusarium spp., we performed whole-genome sequencing of Fusarium andiyazi YN28 using a combination of Oxford Nanopore and Illumina technology. The F. andiyazi YN28 genome was sequenced, assembled, and annotated. A high-quality genome was assembled into 24 contigs with an N50 of 2.80 Mb. The genome assembly generated a total size of 44.1 Mb with a GC content of 47.64%. In total, 15,508 genes were predicted, including 794 genes related to the carbohydrate-active enzymes, 397 noncoding RNA, 155 genes associated with transporter classification, 4,550 genes linked to pathogen-host interactions, and 269 genes involved in effector proteins. Collectively, our results will provide insight into the host-pathogen interactions and will facilitate the breeding of new varieties of sugarcane resistant to PBD.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Fusarium , Saccharum , Fusarium/genética , Melhoramento Vegetal , Doenças das PlantasRESUMO
Sugarcane mosaic virus (SCMV), belonging to genus Potyvirus, family Potyviridae, is a severe pathogen of several agricultural important crops, mainly sugarcane. Due to complex nature of sugarcane, the effect of SCMV pathogenicity on sugarcane photosynthetic systems remains to be explored. In this study, we investigated the alterations occurring in the photosynthetic system in the sugarcane genotypes at the cytopathological, physiological and biological, transcriptome and proteome level. We generated the transcriptome assembly of two genotypes (susceptible Badila and resistant B-48) using Saccharum spontaneum L. as a reference genome. RNA-sequencing data revealed the significant upregulation of NAD(P)H, RubisCO, oxygen-evolving complex, chlorophyll a and b binding protein, Psb protein family, PSI reaction center subunit II, and IVgenes in B-48, as compared to its counterparts. Upregulated genes in B-48 are associated with various processes such as stability and assembly of photosystem, protection against photoinhibition and antiviral defense. The expression pattern of differentially abundant genes were further verified at the proteomics level. Overall, differentially expressed genes/proteins (DEGs/DEPs) showed the consistency of expression at both transcriptome and proteome level in B-48 genotype. Comprehensively, these data supported the efficiency of B-48 genotype under virus infection conditions and provided a better understanding of the expression pattern of photosynthesis-related genes in sugarcane.
Assuntos
Potyvirus , Saccharum , Clorofila A , Fotossíntese/genética , Doenças das Plantas/genética , Saccharum/genéticaRESUMO
The biotrophic basidiomycetous fungus Sporisorium scitamineum causing smut disease in sugarcane is characterized by a life cycle composed of a yeast-like nonpathogenic haploid basidiosporial stage outside the plant and filamentous pathogenic dikaryotic hyphae within the plant. Under field conditions, dikaryotic hyphae are formed after mating of two opposite mating-type strains. However, the mechanisms underlying genetic regulation of filamentation and its association with pathogenicity and development of teliospores are unclear. This study has focused on the characterization and genetic dissection of haploid filamentous mutants derived from T-DNA insertional mutagenesis. Our results support the existence of at least three genotypes among the six haploid filamentous mutants that differentially contribute to virulence and development of the whip and teliospore, providing a novel foundation for further investigation of the regulatory networks associated with pathogenicity and teliospore development in S. scitamineum.
Assuntos
Saccharum , Ustilaginales , DNA Bacteriano , Dissecação , Mutagênese Insercional , Doenças das Plantas , Ustilaginales/genética , VirulênciaRESUMO
A novel virus of the genus Mastrevirus, family Geminivirdae, has been reported in sugarcane germplasm collections in Florida, Guadeloupe, and Réunion, and was named sugarcane striate virus (SStrV). Although the full-length sequence of an SStrV isolate from China was obtained in 2015, the incidence, geographical distribution, and genetic diversity of this virus remained unclear. A single leaf sample from 2,368 sugarcane plants from main sugarcane-producing regions of China and germplasm collections were tested for SStrV by PCR. Average virus incidence was 25.1% for field-collected samples, and SStrV was detected in most Saccharum species and two sugarcane-related species, with the highest incidence in Saccharum officinarum (44.1%) followed by Saccharum spp. local varieties (33.3%) grown for chewing cane for a long time. The virus incidence was much lower (6.8%) in modern commercial cultivars (Saccharum spp. hybrids). Phylogenetic trees based on full-length genomes of 157 SStrV isolates revealed that Chinese isolates comprised strains A and B, but not C and D, that were reported in Florida, U.S.A. SStrV strain A was the most prominent (98.7%) and widespread strain in China and was further divided into eight subgroups. Almost half (45.6%) of the SStrV-positive samples from S. officinarum and Saccharum spp. local varieties were coinfected with sugarcane mosaic disease viruses or sugarcane yellow leaf virus. Interestingly, most of the plants infected by strain A of SStrV were asymptomatic. SStrV appears to be widespread in China, and its influence on chewing cane deserves further investigation.
Assuntos
Geminiviridae , Saccharum , Geminiviridae/genética , Variação Genética , Incidência , FilogeniaRESUMO
Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics analysis in two sugarcane genotypes (Badila: susceptible to SCMV and B-48: SCMV resistant). Using Saccharum spontaneum L. genome as a reference, we identified the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) that participate in sugar metabolism, transport of their metabolites, and Carbohydrate Activating enZYmes (CAZymes). Sequencing data revealed 287 DEGs directly or indirectly involved in sugar metabolism, transport, and storage, while 323 DEGs are associated with CAZymes. Significant upregulation of glucose, sucrose, fructose, starch, and SWEET-related transcripts was observed in the Badila after infection of SCMV. B-48 showed resistance against SCMV with a limited number of sugar transcripts up-regulation at the post-infection stage. For CAZymes, only glycosyltransferase (GT)1 and glycosyl hydrolase (GH)17 were upregulated in B-48. Regulation of DEGs was analyzed at the proteomics level as well. Starch, fructose, glucose, GT1, and GH17 transcripts were expressed at the post-translational level. We verified our transcriptomic results with proteomics and qPCR data. Comprehensively, this study proved that Badila upregulated sugar metabolizing and transporting transcripts and proteins, which enhance virus multiplication and infectionl.