Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Mycol ; 58(4): 521-529, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31281934

RESUMO

Fungal infections, particularly Candida species, have increased worldwide and caused high morbidity and mortality rates. The toxicity and development of resistance in present antifungal drugs justify the need of new drugs with different mechanism of action. BMVC-12C-P, a carbazole-type compound, has been found to dysfunction mitochondria. BMVC-12C-P displayed the strongest antifungal activities among all of the BMVC derivatives. The minimal inhibitory concentration (MIC) of BMVC-12C-P against Candida species ranged from 1 to 2 µg/ml. Fluconazole-resistant clinical isolates of Candida species were highly susceptible to BMVC-12C-P. The potent fungicidal activity of BMVC-12C-P relates to its impairing mitochondrial function. Furthermore, we found that the hyphae growth and biofilm formation were suppressed in C. albicans survived from BMVC-12C-P treatment. This study demonstrates the potential of BMVC-12C-P as an antifungal agent for treating Candida infections.


Assuntos
Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Carbazóis/química , Carbazóis/farmacologia , Farmacorresistência Fúngica , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida/classificação , Fluconazol/farmacologia , Hifas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia
2.
J Biol Chem ; 292(51): 20859-20870, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29084850

RESUMO

DNA secondary structures and methylation are two well-known mechanisms that regulate gene expression. The catalytic subunit of telomerase, human telomerase reverse transcriptase (hTERT), is overexpressed in ∼90% of human cancers to maintain telomere length for cell immortalization. Binding of CCCTC-binding factor (CTCF) to the first exon of the hTERT gene can down-regulate its expression. However, DNA methylation in the first exon can prevent CTCF binding in most cancers, but the molecular mechanism is unknown. The NMR analysis showed that a stretch of guanine-rich sequence in the first exon of hTERT and located within the CTCF-binding region can form two secondary structures, a hairpin and a quadruplex. A key finding was that the methylation of cytosine at the specific CpG dinucleotides will participate in quartet formation, causing the shift of the equilibrium from the hairpin structure to the quadruplex structure. Of further importance was the finding that the quadruplex formation disrupts CTCF protein binding, which results in an increase in hTERT gene expression. Our results not only identify quadruplex formation in the first exon promoted by CpG dinucleotide methylation as a regulator of hTERT expression but also provide a possible mechanistic insight into the regulation of gene expression via secondary DNA structures.


Assuntos
Telomerase/genética , Sequência de Bases , Sítios de Ligação/genética , Fator de Ligação a CCCTC/metabolismo , Linhagem Celular , Ilhas de CpG , DNA/química , DNA/genética , Metilação de DNA , Éxons , Quadruplex G , Expressão Gênica , Humanos , Sequências Repetidas Invertidas , Cinética , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Termodinâmica
3.
Int J Mol Sci ; 19(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389883

RESUMO

Photodynamic inactivation (PDI) has been shown to be a potential treatment modality against Candida infection. However, limited light penetration might leave some cells alive and undergoing regrowth. In this study, we explored the possibility of combining PDI and antifungal agents to enhance the therapeutic efficacy of Candida albicans and drug-resistant clinical isolates. We found that planktonic cells that had survived toluidine blue O (TBO)-mediated PDI were significantly susceptible to fluconazole within the first 2 h post PDI. Following PDI, the killing efficacy of antifungal agents relates to the PDI dose in wild-type and drug-resistant clinical isolates. However, only a 3-log reduction was found in the biofilm cells, suggesting limited therapeutic efficacy under the combined treatment of PDI and azole antifungal drugs. Using confocal microscopic analysis, we showed that TBO-mediated PDI could partially remove the extracellular polymeric substance (EPS) of biofilm. Finally, we showed that a combination of PDI with caspofungin could result in the complete killing of biofilms compared to those treated with caspofungin or PDI alone. These results clearly indicate that the combination of PDI and antifungal agents could be a promising treatment against C. albicans infections.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Luz , Plâncton/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Candida albicans/fisiologia , Candida albicans/efeitos da radiação , Candidíase/microbiologia , Fluconazol/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Fotoquimioterapia/métodos , Plâncton/efeitos da radiação , Cloreto de Tolônio/farmacologia , Triazóis/farmacologia
4.
Int J Mol Sci ; 19(9)2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201851

RESUMO

The differential transcriptional expression of CLIC4 between tumor cells and the surrounding stroma during cancer progression has been suggested to have a tumor-promoting effect. However, little is known about the transcriptional regulation of CLIC4. To better understand how this gene is regulated, the promoter region of CLIC4 was analyzed. We found that a high GC content near the transcriptional start site (TSS) might form an alternative G-quadruplex (G4) structure. Nuclear magnetic resonance spectroscopy (NMR) confirmed their formation in vitro. The reporter assay showed that one of the G4 structures exerted a regulatory role in gene transcription. When the G4-forming sequence was mutated to disrupt the G4 structure, the transcription activity dropped. To examine whether this G4 structure actually has an influence on gene transcription in the chromosome, we utilized the CRISPR/Cas9 system to edit the G4-forming sequence within the CLIC4 promoter in the cell genome. The pop-in/pop-out strategy was adopted to isolate the precisely-edited A375 cell clone. In CRISPR-modified A375 cell clones whose G4 was disrupted, there was a decrease in the endogenous CLIC4 messenger RNA (mRNA) expression level. In conclusion, we found that the G4 structure in the CLIC4 promoter might play an important role in regulating the level of transcription.


Assuntos
Canais de Cloreto/química , Canais de Cloreto/genética , Regulação para Baixo , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico
5.
Int J Mol Sci ; 19(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200473

RESUMO

Previously, we showed that chitosan could augment the biocidal efficacy mediated by photodynamic treatment against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. In this study, we showed that the antimicrobial action of chitosan in augmenting photodynamic inactivation (PDI) is related to the increase in cell surface destruction. The microbial cell surfaces exhibit severe irregular shapes after PDI in the presence of chitosan as demonstrated by transmitted electron microscopy. Furthermore, increases in the concentration or incubation time of chitosan significantly reduced the amounts of photosensitizer toluidine blue O required, indicating that chitosan could be an augmenting agent used in conjunction with PDI against S. aureus, P. aeruginosa, and C. albicans. A prolonged lag phase was found in microbial cells that survived to PDI, in which chitosan acted to completely eradicate the cells. Once the exponential log stage and cell rebuild began, their cellular functions from PDI-induced damage returned and the increased cytotoxic effect of chitosan disappeared. Together, our results suggest that chitosan can prevent the rehabilitation of PDI-surviving microbial cells, leading to increased biocidal efficacy.


Assuntos
Candida albicans/efeitos dos fármacos , Quitosana/administração & dosagem , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Cloreto de Tolônio/administração & dosagem , Anti-Infecciosos/administração & dosagem , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Relação Dose-Resposta a Droga , Fármacos Fotossensibilizantes/administração & dosagem , Fatores de Tempo
6.
J Physiol ; 595(2): 505-521, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27121603

RESUMO

KEY POINTS: Intestinal ischaemia causes epithelial death and crypt dysfunction, leading to barrier defects and gut bacteria-derived septic complications. Enteral glucose protects against ischaemic injury; however, the roles played by glucose metabolites such as pyruvate and ATP on epithelial death and crypt dysfunction remain elusive. A novel form of necrotic death that involves the assembly and phosphorylation of receptor interacting protein kinase 1/3 complex was found in ischaemic enterocytes. Pyruvate suppressed epithelial cell death in an ATP-independent manner and failed to maintain crypt function. Conversely, replenishment of ATP partly restored crypt proliferation but had no effect on epithelial necroptosis in ischaemic gut. Our data argue against the traditional view of ATP as the main cytoprotective factor by glucose metabolism, and indicate a novel anti-necroptotic role of glycolytic pyruvate under ischaemic stress. ABSTRACT: Mesenteric ischaemia/reperfusion induces epithelial death in both forms of apoptosis and necrosis, leading to villus denudation and gut barrier damage. It remains unclear whether programmed cell necrosis [i.e. receptor-interacting protein kinase (RIP)-dependent necroptosis] is involved in ischaemic injury. Previous studies have demonstrated that enteral glucose uptake by sodium-glucose transporter 1 ameliorated ischaemia/reperfusion-induced epithelial injury, partly via anti-apoptotic signalling and maintenance of crypt proliferation. Glucose metabolism is generally assumed to be cytoprotective; however, the roles played by glucose metabolites (e.g. pyruvate and ATP) on epithelial cell death and crypt dysfunction remain elusive. The present study aimed to investigate the cytoprotective effects exerted by distinct glycolytic metabolites in ischaemic gut. Wistar rats subjected to mesenteric ischaemia were enterally instilled glucose, pyruvate or liposomal ATP. The results showed that intestinal ischaemia caused RIP1-dependent epithelial necroptosis and villus destruction accompanied by a reduction in crypt proliferation. Enteral glucose uptake decreased epithelial cell death and increased crypt proliferation, and ameliorated mucosal histological damage. Instillation of cell-permeable pyruvate suppressed epithelial cell death in an ATP-independent manner and improved the villus morphology but failed to maintain crypt function. Conversely, the administration of liposomal ATP partly restored crypt proliferation but did not reduce epithelial necroptosis and histopathological injury. Lastly, glucose and pyruvate attenuated mucosal-to-serosal macromolecular flux and prevented enteric bacterial translocation upon blood reperfusion. In conclusion, glucose metabolites protect against ischaemic injury through distinct modes and sites, including inhibition of epithelial necroptosis by pyruvate and the promotion of crypt proliferation by ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Glucose/metabolismo , Ácido Pirúvico/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Animais , Apoptose , Enterócitos/ultraestrutura , Jejuno/metabolismo , Jejuno/patologia , Jejuno/ultraestrutura , Fígado/microbiologia , Masculino , Microscopia Eletrônica de Transmissão , Necrose , Proteínas Serina-Treonina Quinases/metabolismo , Ratos Wistar , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Baço/microbiologia
7.
Nucleic Acids Res ; 43(21): 10102-13, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26487635

RESUMO

G-quadruplex (G4) is a promising target for anti-cancer treatment. In this paper, we provide the first evidence supporting the presence of G4 in the mitochondrial DNA (mtDNA) of live cells. The molecular engineering of a fluorescent G4 ligand, 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide (BMVC), can change its major cellular localization from the nucleus to the mitochondria in cancer cells, while remaining primarily in the cytoplasm of normal cells. A number of BMVC derivatives with sufficient mitochondrial uptake can induce cancer cell death without damaging normal cells. Fluorescence studies of these anti-cancer agents in live cells and in isolated mitochondria from HeLa cells have demonstrated that their major target is mtDNA. In this study, we use fluorescence lifetime imaging microscopy to verify the existence of mtDNA G4s in live cells. Bioactivity studies indicate that interactions between these anti-cancer agents and mtDNA G4 can suppress mitochondrial gene expression. This work underlines the importance of fluorescence in the monitoring of drug-target interactions in cells and illustrates the emerging development of drugs in which mtDNA G4 is the primary target.


Assuntos
Antineoplásicos/química , Carbazóis/química , DNA Mitocondrial/química , Corantes Fluorescentes/química , Quadruplex G , Compostos de Piridínio/química , Animais , Antineoplásicos/toxicidade , Carbazóis/toxicidade , Linhagem Celular , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Compostos de Piridínio/toxicidade
8.
Int J Mol Sci ; 17(11)2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27809278

RESUMO

Chitosan hydrogels containing hydroxypropyl methylcellulose (HPMC) and toluidine blue O were prepared and assessed for their mucoadhesive property and antimicrobial efficacy of photodynamic inactivation (PDI). Increased HPMC content in the hydrogels resulted in increased mucoadhesiveness. Furthermore, we developed a simple In Vitro 3D gingival model resembling the oral periodontal pocket to culture the biofilms of Staphylococcus aureus (S. aureus), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), and Porphyromonas gingivalis (P. gingivalis). The PDI efficacy of chitosan hydrogel was examined against periodontal biofilms cultured in this 3D gingival model. We found that the PDI effectiveness was limited due to leaving some of the innermost bacteria alive at the non-illuminated site. Using this 3D gingival model, we further optimized PDI procedures with various adjustments of light energy and irradiation sites. The PDI efficacy of the chitosan hydrogel against periodontal biofilms can significantly improve via four sides of irradiation. In conclusion, this study not only showed the clinical applicability of this chitosan hydrogel but also the importance of the light irradiation pattern in performing PDI for periodontal disease.


Assuntos
Quitosana/química , Doenças da Gengiva/tratamento farmacológico , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Fotoquimioterapia/métodos , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/fisiologia , Aggregatibacter actinomycetemcomitans/efeitos da radiação , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Relação Dose-Resposta à Radiação , Gengiva/efeitos dos fármacos , Gengiva/microbiologia , Gengiva/efeitos da radiação , Doenças da Gengiva/microbiologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Derivados da Hipromelose/química , Derivados da Hipromelose/uso terapêutico , Luz , Modelos Anatômicos , Bolsa Periodontal/microbiologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Porphyromonas gingivalis/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Staphylococcus aureus/efeitos da radiação , Cloreto de Tolônio/química , Cloreto de Tolônio/uso terapêutico , Resultado do Tratamento
9.
Lasers Surg Med ; 47(1): 77-87, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25559348

RESUMO

BACKGROUND AND OBJECTIVE: Long circulating doxorubicin (Dox)-loaded PEGylated liposomes are clinically safer than the free form due to the significant reduction of cardiac toxicity. However, the therapeutic efficacy of the PEGylated liposome could further be improved if poor diffusivity and slow drug release of the liposome in tumor interstitium can be overcome. In this study, a dual-effect liposome triggered by photodynamic effect was developed to improve the therapeutic efficacy of Dox-loaded PEGylated liposomes. MATERIALS AND METHODS: Dox and chlorin e6 (Ce6) were co-encapsulated in PEGylated liposomes (named as PL-Dox-Ce6). To induce the drug release, photodynamic effect was triggered by the light irradiation of a 662 nm diode laser. The cellular distribution of Dox and Ce6 was examined under confocal microscope. The in vitro and in vivo cytotoxicity of PL-Dox-Ce6 was determined via the colony formation assay and the synergistic C26 tumor model, respectively. RESULTS: The cellular distribution of PL-Dox-Ce6 was in the cytoplasmic area; while under light irradiation, Dox was co-localized with nuclear staining positive signals. The cellular cytotoxicity of PL-Dox-Ce6 was significantly higher than the controls including liposomes encapsulating either Dox (PL-Dox) or Ce6 (PL-Ce6). The in vivo treatment efficacy of PL-Dox-Ce6 determined in the C26 tumor model reveals a significant therapeutic effect compared to that of PL-Ce6 and PL-Dox alone or in combination. CONCLUSION: This study indicates that this dual-effect PEGylated liposome could provide clinical advantages in the combination regimen of photodynamic therapy and chemotherapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Lasers Semicondutores/uso terapêutico , Fotoquimioterapia/métodos , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofilídeos , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Humanos , Lipossomos , Masculino , Melanoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/efeitos dos fármacos , Fármacos Fotossensibilizantes/administração & dosagem , Polietilenoglicóis/administração & dosagem , Porfirinas/administração & dosagem , Distribuição Aleatória , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 16(10): 23994-4010, 2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26473836

RESUMO

Previously, we have found that cancer cells survived from 5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) have abnormal mitochondrial function and suppressed cellular invasiveness. Here we report that both the mRNA expression level and enzymatic activity of histone deacetylase (HDAC) were elevated in the PDT-derived variants with dysfunctional mitochondria. The activated HDAC deacetylated histone H3 and further resulted in the reduced migration and invasion, which correlated with the reduced expression of the invasion-related genes, matrix metalloproteinase 9 (MMP9), paternally expressed gene 1 (PEG1), and miR-355, the intronic miRNA. Using chromatin immunoprecipitation, we further demonstrate the reduced amount of acetylated histone H3 on the promoter regions of MMP9 and PEG1, supporting the down-regulation of these two genes in PDT-derived variants. These results indicate that HDAC activation induced by mitochondrial dysfunction could modulate the cellular invasiveness and its related gene expression. This argument was further verified in the 51-10 cybrid cells with the 4977 bp mtDNA deletion and A375 ρ° cells with depleted mitochondria. These results indicate that mitochondrial dysfunction might suppress tumor invasion through modulating histone acetylation.


Assuntos
Ácido Aminolevulínico/farmacologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Mitocôndrias/patologia , Invasividade Neoplásica/patologia , Fotoquimioterapia/métodos , Acetilação , Azacitidina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Imunoprecipitação da Cromatina , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , MicroRNAs/genética , Regiões Promotoras Genéticas/genética , Proteínas/genética , Proteínas/metabolismo
11.
Int J Mol Sci ; 16(9): 20859-72, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26340623

RESUMO

Photodynamic inactivation (PDI) combined with chitosan has been shown as a promising antimicrobial approach. The purpose of this study was to develop a chitosan hydrogel containing hydroxypropyl methylcellulose (HPMC), chitosan and toluidine blue O (TBO) to improve the bactericidal efficacy for topical application in clinics. The PDI efficacy of hydrogel was examined in vitro against the biofilms of Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Confocal scanning laser microscopy (CSLM) was performed to investigate the penetration level of TBO into viable S. aureus biofilms. Incorporation of HMPC could increase the physicochemical properties of chitosan hydrogel including the hardness, viscosity as well as bioadhesion; however, higher HMPC concentration also resulted in reduced antimicrobial effect. CSLM analysis further demonstrated that higher HPMC concentration constrained TBO diffusion into the biofilm. The incubation of biofilm and hydrogel was further performed at an angle of 90 degrees. After light irradiation, compared to the mixture of TBO and chitosan, the hydrogel treated sample showed increased PDI efficacy indicated that incorporation of HPMC did improve antimicrobial effect. Finally, the bactericidal efficacy could be significantly augmented by prolonged retention of hydrogel in the biofilm as well as in the animal model of rat skin burn wounds after light irradiation.


Assuntos
Anti-Infecciosos/administração & dosagem , Quitosana/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Derivados da Hipromelose/química , Fármacos Fotossensibilizantes/administração & dosagem , Cloreto de Tolônio/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Química Farmacêutica , Modelos Animais de Doenças , Testes de Sensibilidade Microbiana , Fotoquimioterapia/métodos , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Viscosidade
12.
Lasers Surg Med ; 45(1): 38-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23322262

RESUMO

BACKGROUND AND OBJECTIVES: The mechanisms of photodynamic therapy (PDT) have been studied on the cellular and tissue levels. However, the cellular behaviors of cancer cells survived from PDT are still not clear. Previously, we have found that PDT-derived variants A375/3A5 and A375/6A5 have reduced invasion ability. This study attempted to further elucidate the possible molecules associated with the altered invasiveness in the PDT-derived variants and cancer cells treated with PDT. STUDY DESIGN/MATERIALS AND METHODS: Scratch wound healing assay and invasion assay were performed to evaluate the migration and invasion ability of human A375 melanoma and MDA-MB-231 breast adenocarcinoma cells. Single colony selection and microarray analysis were performed to examine the differentially expressed transcripts in parental A375 and PDT-derived variants. RT-PCR and Western blots analysis were performed to examine the expression levels of matrix metalloproteinase 9 (MMP9) and chloride intracellular channel 4 (CLIC4). The MMP9 activity was examined by Zymography assay. CLIC4 expressing construct was used to examine the influence on MMP9 expression and invasion ability of cancer cells treated with PDT. RESULTS: Correlated with the reduced invasiveness, we found that A375/3A5 and A375/6A5 cells have decreased production of MMP9. Microarray analysis and RT-PCR showed CLIC4 was down-regulated in the PDT-derived variants. Furthermore, down-regulation of CLIC4 and MMP9 was found in cancer cells treated with PDT. Transfection of surviving cancer cells with a plasmid vector encoding CLIC4 increased MMP9 expression and cell invasion. Furthermore, overexpression of CLIC4 in A375 and MDA-MB-231 cancer cells constrains PDT-induced suppression of invasiveness. CONCLUSION: Our results showed that the reduced expression of CLIC4 could further down-regulate MMP9 and result in the suppression of invasion in cancer cells treated with PDT. These results provide an insight into a new mechanism by which PDT affects the metastatic potential of cancer cells through down-regulation of MMP9 by CLIC4.


Assuntos
Adenocarcinoma/patologia , Neoplasias da Mama/patologia , Canais de Cloreto/fisiologia , Neoplasias Pulmonares/patologia , Melanoma/patologia , Fotoquimioterapia , Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo/efeitos da radiação , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Metaloproteinase 9 da Matriz/metabolismo , Melanoma/metabolismo , Melanoma/terapia , Invasividade Neoplásica/patologia
13.
Lasers Surg Med ; 45(3): 175-85, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23508377

RESUMO

BACKGROUND AND OBJECTIVES: Antimicrobial photodynamic inactivation (PDI) is a promising therapeutic modality for the treatment of local infections. To increase the efficacy of PDI, chlorine e6 (Ce6) was encapsulated in cationic CTAB-liposomes composed of various ratios of dimyristoyl-sn-glycero-phosphatidylcholine (DMPC) and the cationic surfactant, cetyltrimethyl ammonium bromide (CTAB). The PDI efficacy of the liposomal-Ce6 was assessed in vitro against susceptible and drug-resistant clinical isolates of Candida albicans (C. albicans) as well as in infected burn wounds. STUDY DESIGN/MATERIALS AND METHODS: Ce6 was encapsulated in CTAB-liposomes by the film hydration method. Particle size distribution and zeta potential of the cationic liposomes were measured using a Zetasizer Nano-ZS. UV-visible spectra were used to measure lipid/Ce6 (L/C) ratio and drug entrapment efficiency while differential scanning calorimetry (DSC) was used to study the thermotropic behavior of DMPC liposomes upon CTAB addition. In vivo PDI efficacy was carried out in an infected burn wound using a rat model. RESULTS: The increase in zeta potential and a shift in the phase transition temperature (Tm ) upon CTAB addition confirmed its entrapment within the lipid bilayers of the liposome. Meanwhile, the CTAB addition did not affect the Ce6 entrapment efficiency and physical attributes of the liposomes. In vitro studies showed that the PDI effect of the Ce6-loaded CTAB-liposomes was dependent on the lipid to Ce6 molar ratio (L/C), particle size and the concentration of CTAB in the liposomes. The lower L/C ratio and smaller liposomes exerted significantly higher PDI effects. In addition, an increase in the CTAB to lipid ratio led to a significant increase in the PDI effect of Ce6 against susceptible and drug-resistant clinical isolates of C. albicans after light illumination. CONCLUSIONS: Our results indicate that a low L/C ratio, high positive charge, and small particle size of CTAB-liposomes significantly enhances their PDI efficacy against C. albicans.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Compostos de Cetrimônio/administração & dosagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Animais , Anti-Infecciosos Locais/uso terapêutico , Queimaduras/complicações , Candidíase/etiologia , Cetrimônio , Compostos de Cetrimônio/uso terapêutico , Clorofilídeos , Lipossomos , Masculino , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Ratos , Ratos Wistar , Resultado do Tratamento
14.
Int J Mol Sci ; 14(4): 7445-56, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23552829

RESUMO

Drug-resistant Candida infection is a major health concern among immunocompromised patients. Antimicrobial photodynamic inactivation (PDI) was introduced as an alternative treatment for local infections. Although Candida (C.) has demonstrated susceptibility to PDI, high doses of photosensitizer (PS) and light energy are required, which may be harmful to eukaryotic human cells. This study explores the capacity of chitosan, a polycationic biopolymer, to increase the efficacy of PDI against C. albicans, as well as fluconazole-resistant clinical isolates in planktonic or biofilm states. Chitosan was shown to effectively augment the effect of PDI mediated by toluidine blue O (TBO) against C. albicans that were incubated with chitosan for 30 min following PDI. Chitosan at concentrations as low as 0.25% eradicated C. albicans; however, without PDI treatment, chitosan alone did not demonstrate significant antimicrobial activity within the 30 min of incubation. These results suggest that chitosan only augmented the fungicidal effect after the cells had been damaged by PDI. Increasing the dosage of chitosan or prolonging the incubation time allowed a reduction in the PDI condition required to completely eradicate C. albicans. These results clearly indicate that combining chitosan with PDI is a promising antimicrobial approach to treat infectious diseases.


Assuntos
Biofilmes , Candida albicans/fisiologia , Candidíase/tratamento farmacológico , Quitosana/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Cloreto de Tolônio/farmacologia , Candida albicans/isolamento & purificação , Corantes/farmacologia , Humanos
15.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259427

RESUMO

Oral delivery has become the route of choice among all other types of drug administrations. However, typical chronic disease drugs are often poorly water-soluble, have low dissolution rates, and undergo first-pass metabolism, ultimately leading to low bioavailability and lack of efficacy. The lipid-based formulation offers tremendous benefits of using versatile excipients and has great compatibility with all types of dosage forms. Self-microemulsifying drug delivery system (SMEDDS) promotes drug self-emulsification in a combination of oil, surfactant, and co-surfactant, thereby facilitating better drug solubility and absorption. The feasible preparation of SMEDDS creates a promising strategy to improve the drawbacks of lipophilic drugs administered orally. Selecting a decent mixing among these components is, therefore, of importance for successful SMEDDS. Quality by Design (QbD) brings a systematic approach to drug development, and it offers promise to significantly improve the manufacturing quality performance of SMEDDS. Furthermore, it could be benefited efficiently by conducting pre-formulation studies integrated with the statistical design of experiment (DoE). In this review, we highlight the recent findings for the development of microemulsions and SMEDDS by using DoE methods to optimize the formulations for drugs in different excipients with controllable ratios. A brief overview of DoE concepts is discussed, along with its technical benefits in improving SMEDDS formulations.

16.
J Pharm Sci ; 112(3): 740-750, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36170906

RESUMO

Liposomes have been used to improve therapeutic efficacy of drugs by increasing their bioavailability and altering biodistribution. The loading capacity of small molecules in liposomes remains a critical issue. Besides, the manufacturing process of liposomes requires multi-step procedures which hinders the clinical development. In this study, we developed a promising lipid-based nanocarriers (LN) delivery system for hydrophilic charged compounds using doxycycline (Doxy) as a model drug. This Doxy-loaded lipid nanocarrier (LN-Doxy) was fabricated by microfluidic technology. Design of experiments (DoE) was constructed to outline the interactions among the critical attributes of formulation, the parameters of microfluidic systems and excipient compositions. Response surface methodology (RSM) was furthered used for the optimization of LN-Doxy formulation. The LN-Doxy developed in this study showed high drug to lipid ratio and uniform distribution of particle size. Compared to Doxy solution, this LN-Doxy has reduced in vitro cellular toxicity and significant therapeutic efficacy which was verified in a peritonitis animal model. These results show the feasibility of using microfluidic technology combined with QbD approach to develop the LN formulation with high loading efficiency for ionizable hydrophilic drugs.


Assuntos
Doxiciclina , Lipossomos , Animais , Doxiciclina/uso terapêutico , Microfluídica/métodos , Distribuição Tecidual , Lipídeos , Tamanho da Partícula
17.
Biomedicines ; 10(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35885039

RESUMO

Small molecules and biologics are the two major categories of active pharmaceutical ingredients (APIs) commonly used for disease management [...].

18.
Biomedicines ; 10(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35740280

RESUMO

Doxorubicin (Dox) is a widely known chemotherapeutic drug that has been encapsulated into liposomes for clinical use, such as Doxil® and Myocet®. Both of these are prepared via remote loading methods, which require multistep procedures. Additionally, their antitumor efficacy is hindered due to the poor drug release from PEGylated liposomes in the tumor microenvironment. In this study, we aimed to develop doxorubicin-loaded lipid-based nanocarriers (LNC-Dox) based on electrostatic interaction using microfluidic technology. The resulting LNC-Dox showed high loading capacity, with a drug-to-lipid ratio (D/L ratio) greater than 0.2, and high efficacy of drug release in an acidic environment. Different lipid compositions were selected based on critical packing parameters and further studied to outline their effects on the physicochemical characteristics of LNC-Dox. Design of experiments was implemented for formulation optimization. The optimized LNC-Dox showed preferred release in acidic environments and better therapeutic efficacy compared to PEGylated liposomal Dox in vivo. Thus, this study provides a feasible approach to efficiently encapsulate doxorubicin into lipid-based nanocarriers fabricated by microfluidic rapid mixing.

19.
Pharmaceutics ; 14(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35335854

RESUMO

Due to the increasing rate of drug resistance in Candida spp., higher doses of antifungal agents are being used resulting in toxicity. Drug delivery systems have been shown to provide an effective approach to enhance the efficacy and reduce the toxicity of antifungal agents. Oleic acid was revealed to effectively inhibit biofilm formation, hence reducing the virulence of Candida albicans. In this study, oleic acid-based self micro-emulsifying delivery systems (OA-SMEDDS) were developed for delivering clotrimazole (CLT). Based on the pseudo-ternary phase diagram and loading capacity test, the optimal ratio of OA-SMEDDS with CLT was selected. CLT-loaded OA-SMEDDS not only bears a higher drug loading capacity but also maintains good storage stability. The minimum inhibitory concentration (MIC50) of CLT-loaded OA-SMEDDS (0.01 µg/mL) in Candida albicans was significantly lower than that of CLT dissolved in DMSO (0.04 µg/mL). Moreover, we showed CLT-loaded OA-SMEDDS could effectively prevent biofilm formation and destroy the intact biofilm structure of Candida albicans. Furthermore, a CLT-loaded OA-SMEDDS gel was developed and evaluated for its antifungal properties. Disk diffusion assay indicated that both CLT-loaded OA-SMEDDS and CLT-loaded OA-SMEDDS gels were more effective than commercially available products in inhibiting the wild-type and drug-resistant species of Candida.

20.
Antimicrob Agents Chemother ; 55(5): 1883-90, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21282440

RESUMO

Antimicrobial photodynamic inactivation (PDI) was shown to be a promising treatment modality for microbial infections. This study explores the effect of chitosan, a polycationic biopolymer, in increasing the PDI efficacy against Gram-positive bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes, and methicillin-resistant S. aureus (MRSA), as well as the Gram-negative bacteria Pseudomonas aeruginosa and Acinetobacter baumannii. Chitosan at <0.1% was included in the antibacterial process either by coincubation with hematoporphyrin (Hp) and subjection to light exposure to induce the PDI effect or by addition after PDI and further incubation for 30 min. Under conditions in which Hp-PDI killed the microbe on a 2- to 4-log scale, treatment with chitosan at concentrations of as low as 0.025% for a further 30 min completely eradicated the bacteria (which were originally at ∼10(8) CFU/ml). Similar results were also found with toluidine blue O (TBO)-mediated PDI in planktonic and biofilm cells. However, without PDI treatment, chitosan alone did not exert significant antimicrobial activity with 30 min of incubation, suggesting that the potentiated effect of chitosan worked after the bacterial damage induced by PDI. Further studies indicated that the potentiated PDI effect of chitosan was related to the level of PDI damage and the deacetylation level of the chitosan. These results indicate that the combination of PDI and chitosan is quite promising for eradicating microbial infections.


Assuntos
Antibacterianos/farmacologia , Quitosana/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Acinetobacter baumannii/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Hematoporfirinas/farmacologia , Testes de Sensibilidade Microbiana , Polilisina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA