Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884259

RESUMO

The intricacies of the human genome, manifested as a complex network of genes, transcend conventional representations in text or numerical matrices. The intricate gene-to-gene relationships inherent in this complexity find a more suitable depiction in graph structures. In the pursuit of predicting gene expression, an endeavor shared by predecessors like the L1000 and Enformer methods, we introduce a novel spatial graph-neural network (GNN) approach. This innovative strategy incorporates graph features, encompassing both regulatory and structural elements. The regulatory elements include pair-wise gene correlation, biological pathways, protein-protein interaction networks, and transcription factor regulation. The spatial structural elements include chromosomal distance, histone modification and Hi-C inferred 3D genomic features. Principal Node Aggregation models, validated independently, emerge as frontrunners, demonstrating superior performance compared to traditional regression and other deep learning models. By embracing the spatial GNN paradigm, our method significantly advances the description of the intricate network of gene interactions, surpassing the performance, predictable scope, and initial requirements set by previous methods.

2.
Acta Pharmacol Sin ; 44(5): 1038-1050, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36470978

RESUMO

Renal interstitial fibrosis is the common pathological process of various chronic kidney diseases to end-stage renal disease. Inhibition of fibroblast activation attenuates renal interstitial fibrosis. Our previous studies show that poricoic acid A (PAA) isolated from Poria cocos is a potent anti-fibrotic agent. In the present study we investigated the effects of PAA on renal fibroblast activation and interstitial fibrosis and the underlying mechanisms. Renal interstitial fibrosis was induced in rats or mice by unilateral ureteral obstruction (UUO). UUO rats were administered PAA (10 mg·kg-1·d-1, i.g.) for 1 or 2 weeks. An in vitro model of renal fibrosis was established in normal renal kidney fibroblasts (NRK-49F cells) treated with TGF-ß1. We showed that PAA treatment rescued Sirt3 expression, and significantly attenuated renal fibroblast activation and interstitial fibrosis in both the in vivo and in vitro models. In TGF-ß1-treated NRK-49F cells, we demonstrated that Sirt3 deacetylated ß-catenin (a key transcription factor of fibroblast activation) and then accelerated its ubiquitin-dependent degradation, thus suppressing the protein expression and promoter activity of pro-fibrotic downstream target genes (twist, snail1, MMP-7 and PAI-1) to alleviate fibroblast activation; the lysine-49 (K49) of ß-catenin was responsible for Sirt3-mediated ß-catenin deacetylation. In molecular docking analysis, we found the potential interaction of Sirt3 and PAA. In both in vivo and in vitro models, pharmacological activation of Sirt3 by PAA significantly suppressed renal fibroblast activation via facilitating ß-catenin K49 deacetylation. In UUO mice and NRK-49F cells, Sirt3 overexpression enhanced the anti-fibrotic effect of PAA, whereas Sirt3 knockdown weakened the effect. Taken together, PAA attenuates renal fibroblast activation and interstitial fibrosis by upregulating Sirt3 and inducing ß-catenin K49 deacetylation, highlighting Sirt3 functions as a promising therapeutic target of renal fibroblast activation and interstitial fibrosis.


Assuntos
Nefropatias , Sirtuína 3 , Triterpenos , beta Catenina , Animais , Camundongos , Ratos , beta Catenina/química , beta Catenina/metabolismo , Fibroblastos , Fibrose/tratamento farmacológico , Fibrose/patologia , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Sirtuína 3/efeitos dos fármacos , Sirtuína 3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico
3.
Med Res Rev ; 42(6): 2067-2101, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35730121

RESUMO

Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.


Assuntos
Morte Celular Regulada , Traumatismo por Reperfusão , Apoptose , Humanos , Isquemia/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
4.
Brief Bioinform ; 21(4): 1479-1486, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31588509

RESUMO

Somatic mutation and gene expression dysregulation are considered two major tumorigenesis factors. While independent investigations of either factor pervade, studies of associations between somatic mutations and gene expression changes have been sporadic and nonsystematic. Utilizing genomic data collected from 11 315 subjects of 33 distinct cancer types, we constructed MutEx, a pan-cancer integrative genomic database. This database records the relationships among gene expression, somatic mutation and survival data for cancer patients. MutEx can be used to swiftly explore the relationship between these genomic/clinic features within and across cancer types and, more importantly, search for corroborating evidence for hypothesis inception. Our database also incorporated Gene Ontology and several pathway databases to enhance functional annotation, and elastic net and a gene expression composite score to aid in survival analysis. To demonstrate the usability of MutEx, we provide several application examples, including top somatic mutations associated with the most extensive expression dysregulation in breast cancer, differential mutational burden downstream of DNA mismatch repair gene mutations and composite gene expression score-based survival difference in breast cancer. MutEx can be accessed at http://www.innovebioinfo.com/Databases/Mutationdb_About.php.


Assuntos
Biologia Computacional/métodos , Genômica , Neoplasias/genética , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Neoplasias/patologia , Linguagens de Programação , Análise de Sobrevida
5.
Acta Pharmacol Sin ; 43(11): 2929-2945, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35577910

RESUMO

Recent studies have shown that endogenous metabolites act via aryl hydrocarbon receptor (AhR) signalling pathway in tubulointerstitial fibrosis (TIF) pathogenesis. However, the mechanisms underlying endogenous metabolite-mediated AhR activation are poorly characterised. In this study, we conducted untargeted metabolomics analysis to identify the significantly altered intrarenal metabolites in a mouse model of unilateral ureteral obstruction (UUO). We found that the levels of the metabolite 1-methoxypyrene (MP) and the mRNA expression of AhR and its target genes CYP1A1, CYP1A2, CYP1B1 and COX-2 were progressively increased in the obstructed kidney at Weeks 1, 2 and 3. Furthermore, these changes were positively correlated with progressive TIF in UUO mice. In NRK-52E, RAW 264.7 and NRK-49F cells, MP dose-dependently upregulated the mRNA expression of AhR and its four target genes and the protein expression of nuclear AhR, accompanied by the upregulated protein expression of collagen I, α-SMA and fibronectin, as well as downregulated E-cadherin expression. Consistently, oral administration of MP in mice progressively enhanced AhR activity and upregulated profibrotic protein expression in the kidneys; these effects were partially inhibited by AhR knockdown in MP-treated mice and cell lines. In addition, we screened and identified erythro-guaiacylglycerol-ß-ferulic acid ether (GFA), which was isolated from Semen plantaginis, as a new AhR antagonist. GFA significantly attenuated TIF in MP-treated NRK-52E cells and mice by partially antagonising AhR activity. Our results suggest that MP activates AhR signalling, thus mediating TIF through epithelial-mesenchymal transition and macrophage-myofibroblast transition. MP is a crucial metabolite that contributes to TIF via AhR signalling pathway.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/genética , Fibrose , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Obstrução Ureteral/complicações , RNA Mensageiro
6.
Bioinformatics ; 36(9): 2899-2901, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31930398

RESUMO

MOTIVATION: Genome annotation is an important step for all in-depth bioinformatics analysis. It is imperative to augment quantity and diversity of genome-wide annotation data for the latest reference genome to promote its adoption by ongoing and future impactful studies. RESULTS: We developed a python toolkit AnnoGen, which at the first time, allows the annotation of three pragmatic genomic features for the GRCh38 genome in enormous base-wise quantities. The three features are chemical binding Energy, sequence information Entropy and Homology Score. The Homology Score is an exceptional feature that captures the genome-wide homology through single-base-offset tiling windows of 100 continual nucleotide bases. AnnoGen is capable of annotating the proprietary pragmatic features for variable user-interested genomic regions and optionally comparing two parallel sets of genomic regions. AnnoGen is characterized with simple utility modes and succinct HTML report of informative statistical tables and plots. AVAILABILITY AND IMPLEMENTATION: https://github.com/shengqh/annogen.


Assuntos
Genoma , Software , Biologia Computacional , Genômica
7.
Med Res Rev ; 40(1): 54-78, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31131921

RESUMO

Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-ß1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Transição Epitelial-Mesenquimal/genética , Fibrose , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos
8.
Cell Mol Life Sci ; 76(24): 4961-4978, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31147751

RESUMO

Dysbiosis of the gut microbiome and related metabolites in chronic kidney disease (CKD) have been intimately associated with the prevalence of cardiovascular diseases. Unfortunately, thus far, there is a paucity of sufficient knowledge of gut microbiome and related metabolites on CKD progression partly due to the severely limited investigations. Using a 5/6 nephrectomized (NX) rat model, we carried out 16S rRNA sequence and untargeted metabolomic analyses to explore the relationship between colon's microbiota and serum metabolites. Marked decline in microbial diversity and richness was accompanied by significant changes in 291 serum metabolites, which were mediated by altered enzymatic activities and dysregulations of lipids, amino acids, bile acids and polyamines metabolisms. Interestingly, CCr was directly associated with some microbial genera and polyamine metabolism. However, SBP was directly related to certain microbial genera and glycine-conjugated metabolites in CKD rats. Administration of poricoic acid A (PAA) and Poria cocos (PC) ameliorated microbial dysbiosis as well as attenuated hypertension and renal fibrosis. In addition, treatments with PAA and PC lowered serum levels of microbial-derived products including glycine-conjugated compounds and polyamine metabolites. Collectively, the present study confirmed the CKD-associated gut microbial dysbiosis and identified a novel dietary and therapeutic strategy to improve the gut microbial dysbiosis and the associated metabolomic disorders and retarded the progression of kidney disease in the rat model of CKD.


Assuntos
Disbiose/metabolismo , Microbioma Gastrointestinal/genética , Hipertensão/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Modelos Animais de Doenças , Disbiose/genética , Disbiose/patologia , Glicina/metabolismo , Humanos , Hipertensão/genética , Hipertensão/patologia , Masculino , Metaboloma/genética , Metabolômica/métodos , Poliaminas/metabolismo , Ratos , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/patologia , Triterpenos/farmacologia , Wolfiporia/metabolismo
9.
Anal Chem ; 91(9): 5478-5482, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30973713

RESUMO

Bisecting N-glycan represents one of the most important modifications to the N-glycan core, and it is involved in various biological processes. Despite many studies on the biological roles of bisecting N-glycans, current approaches for bisecting N-glycan analysis mainly rely on the use of the lectin PHA-E, which are of low specificity and sensitivity. Here, we describe a straightforward method for the recognition of bisecting N-glycans on intact glycopeptides using two characteristic Y ions [peptide+HexNAc3Hex1] and [peptide+HexNAc3Hex1Fuc1] in low energy fragmented MS/MS spectra under higher energy collisional dissociation (HCD) mode. The critical aspect of the method is the combination use of low energy HCD fragmentation and intact glycopeptide analysis. With samples from rat renal tissues, we determined the optimal fragmentation energies and analyzed the influence of core fucosylation on the intensity of the [peptide+HexNAc3Hex1] ion. Using the method, we identified 183 intact glycopeptides with bisecting N-glycans and investigated the primary bisecting N-glycan structures and the possible biological roles of these identified proteins.


Assuntos
Glicopeptídeos/química , Polissacarídeos/química , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Animais , Ratos
10.
J Transl Med ; 17(1): 5, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602367

RESUMO

Dysbiosis represents changes in composition and structure of the gut microbiome community (microbiome), which may dictate the physiological phenotype (health or disease). Recent technological advances and efforts in metagenomic and metabolomic analyses have led to a dramatical growth in our understanding of microbiome, but still, the mechanisms underlying gut microbiome-host interactions in healthy or diseased state remain elusive and their elucidation is in infancy. Disruption of the normal gut microbiota may lead to intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation. Excessive uremic toxins are produced as a result of gut microbiota alteration, including indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide, all implicated in the variant processes of kidney diseases development. This review focuses on the pathogenic association between gut microbiota and kidney diseases (the gut-kidney axis), covering CKD, IgA nephropathy, nephrolithiasis, hypertension, acute kidney injury, hemodialysis and peritoneal dialysis in clinic. Targeted interventions including probiotic, prebiotic and symbiotic measures are discussed for their potential of re-establishing symbiosis, and more effective strategies for the treatment of kidney diseases patients are suggested. The novel insights into the dysbiosis of the gut microbiota in kidney diseases are helpful to develop novel therapeutic strategies for preventing or attenuating kidney diseases and complications.


Assuntos
Trato Gastrointestinal/microbiologia , Nefropatias/microbiologia , Rim/microbiologia , Metaboloma , Microbiota , Animais , Disbiose/microbiologia , Humanos
11.
Metabolomics ; 16(1): 4, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31807893

RESUMO

INTRODUCTION: With chronic kidney disease (CKD), kidney becomes damaged overtime and fails to clean blood. Around 15% of US adults have CKD and nine in ten adults with CKD do not know they have it. OBJECTIVE: Early prediction and accurate monitoring of CKD may improve care and decrease the frequent progression to end-stage renal disease. There is an urgent demand to discover specific biomarkers that allow for monitoring of early-stage CKD, and response to treatment. METHOD: To discover such biomarkers, shotgun high throughput was applied to the detection of serum metabolites biomarker discovery for early stages of CKD from 703 participants. Ultra performance liquid chromatography coupled with high-definition mass spectrometry (UPLC-HDMS)-based metabolomics was used for the determination of 703 fasting serum samples from five stages of CKD patients and age-matched healthy controls. RESULTS AND CONCLUSION: We discovered a set of metabolite biomarkers using a series of classic and neural network based machine learning techniques. This set of metabolites can separate early CKD stage patents from normal subjects with high accuracy. Our study illustrates the power of machine learning methods in metabolite biomarker study.


Assuntos
Biomarcadores/sangue , Aprendizado de Máquina , Insuficiência Renal Crônica/patologia , Adulto , Idoso , Estudos de Casos e Controles , Cromatografia Líquida de Alta Pressão , Creatinina/sangue , Feminino , Taxa de Filtração Glomerular , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Insuficiência Renal Crônica/metabolismo , Índice de Gravidade de Doença
12.
J Proteome Res ; 16(4): 1566-1578, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28286957

RESUMO

Chronic kidney disease (CKD) results in significant dyslipidemia and profound changes in lipid and lipoprotein metabolism. The associated dyslipidemia, in turn, contributes to progression of CKD and its cardiovascular complications. To gain an in-depth insight into the disorders of lipid metabolism in advanced CKD, we applied UPLC-HDMS-based lipidomics to measure serum lipid metabolites in 180 patients with advanced CKD and 120 age-matched healthy controls. We found significant increases in the levels of total free fatty acids, glycerolipids, and glycerophospholipids in patients with CKD. The levels of free fatty acids, glycerolipids, and glycerophospholipids directly correlated with the level of serum triglyceride and inversely correlated with the levels of total cholesterol and eGFR. A total of 126 lipid species were identified from positive and negative ion modes. Out of 126, 113 identified lipid species were significantly altered in patients with CKD based on the adjusted FDR method. These results pointed to profound disturbance of fatty acid and triglyceride metabolisms in patients with CKD. Logistic regression analysis showed strong correlations between serum methyl hexadecanoic acid, LPC(24:1), 3-oxooctadecanoic acid, and PC(20:2/24:1) levels with eGFR and serum creatinine levels (R > 0.8758). In conclusion, application of UPLC-HDMS-based lipidomic technique revealed profound changes in lipid metabolites in patients with CKD. The observed increases in serum total fatty acids, glycerolipids, and glycerophospholipids levels directly correlated with increased serum triglyceride level and inversely correlated with the eGFR and triglyceride levels.


Assuntos
Dislipidemias/sangue , Metabolismo dos Lipídeos/genética , Insuficiência Renal Crônica/sangue , Triglicerídeos/sangue , Adulto , Idoso , Colesterol/sangue , Dislipidemias/genética , Dislipidemias/patologia , Ácidos Graxos/sangue , Feminino , Glicerofosfolipídeos/sangue , Humanos , Lipídeos/sangue , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia
13.
Nephrol Dial Transplant ; 32(7): 1154-1166, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339984

RESUMO

BACKGROUND: The kidney plays a central role in elimination of metabolic waste products and regulation of low-molecular weight metabolites via glomerular filtration, tubular secretion and reabsorption. Disruption of these processes results in profound changes in the biochemical milieu of the body fluids, which contribute to complications of chronic kidney disease (CKD) by inducing cytotoxicity and inflammation. Insight into the changes of the composition of metabolites and dysregulation of target genes and proteins enhances the understanding of the pathophysiology of CKD and its complications, and the development of novel therapeutic strategies. Chronic interstitial nephropathy is a common cause of CKD. The present study was designed to determine the effect of chronic interstitial nephropathy on the composition of serum metabolites and regulation of oxidative, inflammatory, fibrotic and cytoprotective pathways. METHODS: Male Sprague-Dawley rats were randomized to the CKD and control groups ( n = 8/group). CKD was induced by administration of adenine (200 mg/kg body weight/day) by oral gavage for 3 weeks. The control group was treated with the vehicle alone. The animals were then observed for an additional 3 weeks, at which point they were sacrificed and kidney and serum samples were collected. Serum metabolomic and lipidomic analyses were performed using ultra-performance liquid chromatography-quadrupole time-of-flight high-definition mass spectrometry. Kidney tissues were processed for histological and molecular biochemical analyses. RESULTS: CKD rats exhibited increased plasma urea and creatinine concentrations, renal interstitial fibrosis, tubular damage and up-regulation of pro-inflammatory, pro-oxidant and pro-fibrotic pathways. Comparison of serum from CKD and control rats revealed significant differences in concentrations of amino acids and lipids including 33 metabolites and 35 lipid species. This was associated with marked abnormalities of fatty acid oxidation, and γ-linolenic acid and linoleic acid metabolism in CKD rats. Logistic regression analysis identified tetracosanoic acid, docosatrienoic acid, PC(18:3/14:1) and l -aspartic acid, tetracosanoic acid and docosatrienoic acid as novel biomarkers of chronic interstitial nephropathy. CONCLUSIONS: Advanced CKD in rats with adenine-induced chronic interstitial nephropathy results in profound changes in the serum metabolome, activation of inflammatory, oxidative and fibrotic pathways, and suppression of cytoprotective and antioxidant pathways.


Assuntos
Biomarcadores/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Insuficiência Renal Crônica/fisiopatologia , Animais , Masculino , Metabolômica/métodos , Fenótipo , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/metabolismo
14.
Biomed Chromatogr ; 31(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27571931

RESUMO

Rhizoma Alismatis (RA), a diuretic in Asia and Europe, was found to possess anti-hyperlipidemic activity. Since the biomarkers and mechanisms of RA in the treatment of hyperlipidemia are inadequate, ultra-performance liquid chromatography coupled with quadrupole time-of-flight synapt high-definition mass spectrometry and multivariate data analysis were employed to investigate the urinary metabolomics of RA on hyperlipidemic rats induced by high-fat diet. The metabolic profile of RA-treated hyperlipidemic group located between control and diet-induced hyperlipidemic groups. Nineteen metabolites with significant fluctuations were identified as potential biomarkers related to the hyperlipidemia and anti-hyperlipidemia of RA using partial least-squares-discriminate analysis, heatmap analysis and correlation coefficient analysis. The fluctuations of these biomarkers represented disturbances in amino acid metabolism, purine metabolism, pyrimidine metabolism and energy metabolism. After RA treatment, these perturbed metabolites were restored to normal or nearly normal levels. RA can alleviate high-fat diet-induced dysfunctions in these metabolic pathways.


Assuntos
Alisma/química , Biomarcadores/urina , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/urina , Hipolipemiantes/farmacologia , Animais , Biomarcadores/metabolismo , LDL-Colesterol/sangue , Cromatografia Líquida/métodos , Dieta Hiperlipídica/efeitos adversos , Hiperlipidemias/etiologia , Hipolipemiantes/química , Análise dos Mínimos Quadrados , Masculino , Espectrometria de Massas , Análise Multivariada , Plantas Medicinais/química , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Rizoma/química , Triglicerídeos/sangue
15.
Zhongguo Zhong Yao Za Zhi ; 39(20): 3905-9, 2014 Oct.
Artigo em Zh | MEDLINE | ID: mdl-25751937

RESUMO

Ergosta-4,6,8(14),22-tetraen-3-one (ergone) is one of main components in many medicinal fungi. Ergone has been reported to possess the activities of diuresis, cytotoxicity, antitumor, immunosuppression, as well as treatment of chronic kidney disease. According to reported literatures, an overview of spectroscopy characteristics, content determination, pharmacological activity and pharmacokinetics, etc. for ergone is presented in this review. Furthermore, the present review can provide a certain reference value for the further study and development of ergone.


Assuntos
Colestenonas/farmacologia , Colestenonas/farmacocinética , Medicamentos de Ervas Chinesas/farmacocinética , Animais , Colestenonas/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos
16.
Front Pharmacol ; 15: 1376252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38910890

RESUMO

Pyruvate kinase M2 (PKM2), a rate limiting enzyme in glycolysis, is a cellular regulator that has received extensive attention and regards as a metabolic regulator of cellular metabolism and energy. Kidney is a highly metabolically active organ, and glycolysis is the important energy resource for kidney. The accumulated evidences indicates that the enzymatic activity of PKM2 is disturbed in kidney disease progression and treatment, especially diabetic kidney disease and acute kidney injury. Modulating PKM2 post-translational modification determines its enzymatic activity and nuclear translocation that serves as an important interventional approach to regulate PKM2. Emerging evidences show that PKM2 and its post-translational modification participate in kidney disease progression and treatment through modulating metabolism regulation, podocyte injury, fibroblast activation and proliferation, macrophage polarization, and T cell regulation. Interestingly, PKM2 activators (TEPP-46, DASA-58, mitapivat, and TP-1454) and PKM2 inhibitors (shikonin, alkannin, compound 3k and compound 3h) have exhibited potential therapeutic property in kidney disease, which indicates the pleiotropic effects of PKM2 in kidney. In the future, the deep investigation of PKM2 pleiotropic effects in kidney is urgently needed to determine the therapeutic effect of PKM2 activator/inhibitor to benefit patients. The information in this review highlights that PKM2 functions as a potential biomarker and therapeutic target for kidney diseases.

17.
Exp Gerontol ; 188: 112393, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458480

RESUMO

Diabetic kidney disease (DKD) is leading causes and one of the fastest growing causes of chronic kidney disease worldwide, and leads to high morbidity and mortality. Emerging evidences have revealed gut microbiota dysbiosis and related metabolism dysfunction play a dominant role in DKD progression and treatment through modulating inflammation. Our previous studies showed that Tangshen Formula (TSF), a Chinese herbal prescription, exhibited anti-inflammatory effect on DKD, but underlying mechanism that involved gut microbiota and related metabolism in aged model remained obscure. Here, BTBR ob/ob mice were used to establish aged DKD model, and 16S rRNA sequence and untargeted metabolomic analyses were employed to investigate the correlation between colonic microbiota and serum metabolism. The aged ob/ob mice exhibited obvious glomerular and renal tubule injury and kidney function decline in kidney, while TSF treatment significantly attenuated these abnormalities. TSF also exhibited potent anti-inflammatory effect in aged ob/ob mice indicating by reduced proinflammatory factor IL-6 and TNF-α, MCP-1 and COX-2 in serum, kidney and intestine, which suggested the involvement of gut microbiota with TSF effect. The 16S rDNA sequencing of the colonic microbiome and untargeted serum metabolomics analysis revealed significant differences in gut microbiota structure and serum metabolomic profiles between WT and ob/ob mice. Notably, TSF treatment reshaped the structure of gut microbiota and corrected the disorder of metabolism especially tryptophan metabolism and arginine biosynthesis. TSF increased Anaeroplasma and Barnesiella genera and decreased Romboutsia, Akkermansia, and Collinsella genera, and further elevated tryptophan, 5-hydroxyindoleacetate, glutamic acid, aspartate and reduced 4-hydroxy-2-quinolinecarboxylic acid, indole-3-acetic acid, xanthurenic acid, glutamine. Further correlation analysis indicated that disturbed gut microbiota was linked to tryptophan metabolism and arginine biosynthesis to regulate inflammation in aged DKD. Our data revealed that TSF attenuated renal inflammation by modulating gut microbiota and related amino acid metabolism in aged DKD model, highlighting gut microbiota and related metabolism functioned as potential therapeutic target for DKD in elderly patients.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Humanos , Idoso , Camundongos , Animais , Nefropatias Diabéticas/tratamento farmacológico , RNA Ribossômico 16S/genética , Triptofano , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Arginina
18.
J Sep Sci ; 36(5): 863-71, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23371758

RESUMO

2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-glucoside (THSG) from Polygoni multiflori has been demonstrated to possess a variety of pharmacological activities, including antioxidant, anti-inflammatory and hepatoprotective activities. Ultra-performance LC-quadrupole TOF-MS with MS Elevated Energy data collection technique and rapid resolution LC with diode array detection and ESI multistage MS(n) methods were developed for the pharmacokinetics, tissue distribution, metabolism, and excretion studies of THSG in rats following a single intravenous or oral dose. The three metabolites were identified by rapid resolution LC-MS(n). The concentrations of the THSG in rat plasma, bile, urine, feces, or tissue samples were determined by ultra-performance LC-MS. The results showed that THSG was rapidly distributed and eliminated from rat plasma. After the intravenous administration, THSG was mainly distributing in the liver, heart, and lung. For the rat, the major distribution tissues after oral administration were heart, kidney, liver, and lung. There was no long-term storage of THSG in rat tissues. Total recoveries of THSG within 24 h were low (0.1% in bile, 0.007% in urine, and 0.063% in feces) and THSG was excreted mainly in the forms of metabolites, which may resulted from biotransformation in the liver.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Glucosídeos/farmacocinética , Espectrometria de Massas/métodos , Estilbenos/farmacocinética , Animais , Bile/química , Medicamentos de Ervas Chinesas/análise , Fezes/química , Glucosídeos/sangue , Glucosídeos/urina , Masculino , Ratos , Ratos Sprague-Dawley , Estilbenos/sangue , Estilbenos/urina , Distribuição Tecidual
19.
Zhongguo Zhong Yao Za Zhi ; 38(7): 1098-102, 2013 Apr.
Artigo em Zh | MEDLINE | ID: mdl-23847967

RESUMO

The surface layer of the sclerotia of Poria cocos, named Fu-Ling-Pi, is used as a diuretic in traditional Chinese medicine to treat edema and urinary dysfunction. Recent studies have showed that the triterpenes (lanostane and 3,4-secolanostane skeletons) and polysaccharides (beta-pachyman) are the main components of Fu-Ling-Pi and they exhibited various biological activities, such as anti-tumor, antibacterial and antioxidant, etc. This review was focused on the chemistry, pharmacology, and clinical uses of this drug and it may provide scientific foundation for further development and utilization of Fulingpi.


Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Poria/química , Animais , Tratamento Farmacológico , Humanos , Estrutura Molecular , Wolfiporia
20.
Front Pharmacol ; 14: 1097206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874000

RESUMO

Artemisinin, an antimalarial traditional Chinese herb, is isolated from Artemisia annua. L, and has shown fewer side effects. Several pieces of evidence have demonstrated that artemisinin and its derivatives exhibited therapeutic effects on diseases like malaria, cancer, immune disorders, and inflammatory diseases. Additionally, the antimalarial drugs demonstrated antioxidant and anti-inflammatory activities, regulating the immune system and autophagy and modulating glycolipid metabolism properties, suggesting an alternative for managing kidney disease. This review assessed the pharmacological activities of artemisinin. It summarized the critical outcomes and probable mechanism of artemisinins in treating kidney diseases, including inflammatory, oxidative stress, autophagy, mitochondrial homeostasis, endoplasmic reticulum stress, glycolipid metabolism, insulin resistance, diabetic nephropathy, lupus nephritis, membranous nephropathy, IgA nephropathy, and acute kidney injury, suggesting the therapeutic potential of artemisinin and its derivatives in managing kidney diseases, especially the podocyte-associated kidney diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA