Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 97(9): e0060123, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37676001

RESUMO

Canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) was recently isolated from a child with pneumonia. This novel human pathogen resulted from cross-species transmission of a canine coronavirus. It has been known that CCoV-HuPn-2018 uses aminopeptidase N (APN) from canines, felines, and porcines, but not humans, as functional receptors for cell entry. The molecular mechanism of cell entry in CCoV-HuPn-2018 remains poorly understood. In this study, we demonstrated that among the nine APN orthologs tested, the APN of the Mexican free-tailed bat could also efficiently support CCoV-HuPn-2018 spike (S) protein-mediated entry, raising the possibility that bats may also be an alternative host epidemiologically important for the transmission of this virus. The glycosylation at residue N747 of canine APN is critical for its receptor activity. The gain of glycosylation at the corresponding residues in human and rabbit APNs converted them to functional receptors for CCoV-HuPn-2018. Interestingly, the CCoV-HuPn-2018 spike protein pseudotyped virus infected multiple human cancer cell lines in a human APN-independent manner, whereas sialic acid appeared to facilitate the entry of the pseudotyped virus into human cancer cells. Moreover, while host cell surface proteases trypsin and TMPRSS2 did not promote the entry of CCoV-HuPn-2018, endosomal proteases cathepsin L and B are required for the entry of CCoV-HuPn-2018 in a pH-dependent manner. IFITMs and LY6E are host restriction factors for the CCoV-HuPn-2018 entry. Our results thus suggest that CCoV-HuPn-2018 has not yet evolved to be an efficient human pathogen. Collectively, this study helps us understand the cell tropism, receptor usage, cross-species transmission, natural reservoir, and pathogenesis of this potential human coronavirus. IMPORTANCE Viral entry is driven by the interaction between the viral spike protein and its specific cellular receptor, which determines cell tropism and host range and is the major constraint to interspecies transmission of coronaviruses. Aminopeptidase N (APN; also called CD13) is a cellular receptor for HCoV-229E, the newly discovered canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018), and many other animal alphacoronaviruses. We examined the receptor activity of nine APN orthologs and found that CCoV-HuPn-2018 utilizes APN from a broad range of animal species, including bats but not humans, to enter host cells. To our surprise, we found that CCoV-HuPn-2018 spike protein pseudotyped viral particles successfully infected multiple human hepatoma-derived cell lines and a lung cancer cell line, which is independent of the expression of human APN. Our findings thus provide mechanistic insight into the natural hosts and interspecies transmission of CCoV-HuPn-2018-like coronaviruses.


Assuntos
Antígenos CD13 , Infecções por Coronavirus , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Animais , Cães , Humanos , Coelhos , Antígenos CD13/metabolismo , Quirópteros/virologia , Coronavirus/fisiologia , Pneumonia , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
EMBO Rep ; 23(11): e55099, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36125406

RESUMO

Stimulator of interferon genes (STING) is an essential signaling protein that is located on the endoplasmic reticulum (ER) and triggers the production of type I interferons (IFN) and proinflammatory cytokines in response to pathogenic DNA. Aberrant activation of STING is linked to autoimmune diseases. The mechanisms underlying homeostatic regulation of STING are unclear. Here, we report that UNC13D, which is associated with familial hemophagocytic lymphohistiocytosis (FHL3), is a negative regulator of the STING-mediated innate immune response. UNC13D colocalizes with STING on the ER and inhibits STING oligomerization. Cellular knockdown and knockout of UNC13D promote the production of interferon-ß (IFN-ß) induced by DNA viruses, but not RNA viruses. Moreover, UNC13D deficiency also increases the basal level of proinflammatory cytokines. These effects are diminished by an inhibitor of STING signaling. Furthermore, the domains involved in the UNC13D/STING interaction on both proteins are mapped. Our findings provide insight into the regulatory mechanism of STING, the previously unknown cellular function of UNC13D and the potential pathogenesis of FHL3.


Assuntos
Retículo Endoplasmático , Interferon Tipo I , Retículo Endoplasmático/metabolismo , Transdução de Sinais , Imunidade Inata , Interferon beta/genética
3.
J Med Virol ; 95(10): e29136, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37804496

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron harbors more than 30 mutations of the spike protein and exhibits substantial immune evasion. Although previous study indicated that BNT162b2 messenger RNA vaccine induces potent cross-clade pan-sarbecovirus neutralizing antibodies in survivors of the infection by SARS-CoV-1, the neutralization activity and Fc-mediated effector functions of these cross-reactive antibodies elicited in SARS-CoV-1 survivors to Omicron subvariants still remain largely unknown. In this study, the neutralization activity and Fc-mediated effector functions of antibodies boosted by a third dose vaccination were characterized in SARS-CoV-1 convalescents and healthy individuals. Potent cross-clade broadly neutralizing antibodies were observed in SARS-CoV-1 survivors who received a three-dose vaccination regimen consisting of two priming doses of CoronaVac followed by one booster dose of the protein subunit vaccine ZF2001. However, the induced antibodies exhibited both reduced neutralization and impaired Fc effector functions targeting multiple Omicron subvariants. Importantly, the data also support the notion that immune imprints resulted from SARS-CoV-1 infection may exacerbate the impairment of neutralization activity and Fc-mediated effector functions to Omicron subvariants and provided invaluable information to vaccination strategy in future.


Assuntos
Vacina BNT162 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Vacinas de Subunidades Antigênicas , SARS-CoV-2 , Sobreviventes , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
Clin Chem Lab Med ; 61(6): 1123-1130, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36656975

RESUMO

OBJECTIVES: To describe a high-sensitivity SARS-CoV-2 antigen test that is based on the fully automated light-initiated chemiluminescent immunoassay (LiCA®), and to validate its analytical characteristics and clinical agreement on detecting SARS-CoV-2 infection against the reference molecular test. METHODS: Analytical performance was validated and detection limits were determined using different types of nucleocapsid protein samples. 798-pair anterior nasal swab specimens were collected from hospitalized patients and asymptomatic screening individuals. Agreement between LiCA® antigen and real-time reverse transcription polymerase chain reaction (rRT-PCR) was evaluated. RESULTS: Repeatability and within-lab precision were 1.6-2.3%. The C5∼C95 interval was -5.1-4.6% away from C50. Detection limits in average (SD) were 325 (±141) U/mL on the national reference panel, 0.07 (±0.04) TCID50/mL on active viral cultures, 0.27 (±0.09) pg/mL on recombinant nucleocapsid proteins and 1.07 (±1.01) TCID50/mL on inactivated viral suspensions, respectively. LiCA detected a median of 374-fold (IQR 137-643) lower levels of the viral antigen than comparative rapid tests. As reference to the rRT-PCR method, overall sensitivity and specificity were determined to be 97.5% (91.4-99.7%) and 99.9% (99.2-100%), respectively. Total agreement between both methods was 99.6% (98.7-99.9%) with Cohen's kappa 0.98 (0.96-1). A positive detection rate of 100% (95.4-100%) was obtained as Ct≤37.8. CONCLUSIONS: The LiCA® system provides an exceptionally high-sensitivity and fully automated platform for the detection of the SARS-CoV-2 antigen in nasal swabs. The assay may have high potential use for large-scale population screening and surveillance of COVID-19 as an alternative to the rRT-PCR test.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Teste para COVID-19/métodos , Sensibilidade e Especificidade , Proteínas do Nucleocapsídeo/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Imunoensaio/métodos
5.
J Nanobiotechnology ; 21(1): 116, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36991451

RESUMO

Biofilm-related diseases are a group of diseases that tolerate antimicrobial chemotherapies and therefore are refractory to treatment. Periodontitis, a non-device chronic biofilm disease induced by dental plaque, can serve as an excellent in vivo model to study the important effects of host factors on the biofilm microenvironment. Macrophage activity is one of the key factors that modulate the progression of inflammation-driven destruction in periodontitis; therefore it is an important host immunomodulatory factor. In this study, the reduction of microRNA-126 (miR-126) with the recruitment of macrophages in periodontitis was confirmed in clinical samples, and a strategy for targeted delivery of miR-126 to macrophages was explored. Exosomes overexpressing the C-X-C motif chemokine receptor 4 (CXCR4) loaded with miR-126 (CXCR4-miR126-Exo) was successfully constructed, which reduced off-target delivery to macrophages and regulated macrophages toward the anti-inflammatory phenotype. In vivo local injection of CXCR4-miR126-Exo into sites of periodontitis in rats effectively reduced bone resorption and osteoclastogenesis and inhibited the progression of periodontitis. These results provide new insights for designing novel immunomodulatory factor targeted delivery systems to treat periodontitis and other biofilm-related diseases.


Assuntos
Exossomos , MicroRNAs , Periodontite , Ratos , Animais , Periodontite/terapia , Inflamação , MicroRNAs/genética , Macrófagos , Receptores CXCR4/genética
6.
Clin Oral Investig ; 27(7): 3937-3948, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060358

RESUMO

OBJECTIVES: Limited information is available about the biological characterization of peri-implant soft tissue at the transcriptional level. The aim of this study was to investigate the effect of dental implant on the soft tissue in vivo by using paired samples and compare the differences between peri-implant soft tissue and periodontal gingiva at the transcriptional level. METHODS: Paired peri-implant soft tissue and periodontal gingiva tissue from 6 patients were obtained, and the pooled RNAs were analyzed by deep sequencing. Venn diagram was used to further screen out differentially expressed genes in every pair of samples. Annotation and enrichment analysis was performed. Further verification was done by quantitative real-time PCR. RESULTS: Totally 3549 differentially expressed genes (DEGs) were found between peri-implant and periodontal groups. The Venn diagram further identified 185 DEGs in every pair of samples, of which the enrichment analysis identified significant enrichment for cellular component was associated with external side of plasma membrane, for molecular function was protein binding, for biological process was immune system process, and for KEGG pathway was cytokine-cytokine receptor interaction. Among the DEGs, CST1, SPP1, AQP9, and SFRP2 were verified to be upregulated in peri-implant soft tissue. CONCLUSIONS: Peri-implant soft tissue showed altered expressions of several genes related to the cell-ECM interaction compared to periodontal gingiva. CLINICAL RELEVANCE: Compared to periodontal gingiva, altered cell-ECM interactions in peri-implant may contribute to the susceptibility of peri-implant diseases. At the transcriptional level, periodontal gingiva is generally considered the appropriate control for peri-implantitis, except regarding the cell-ECM interactions.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Gengiva/cirurgia , Periodonto , Implantação Dentária Endóssea , Peri-Implantite/genética , Perfilação da Expressão Gênica
7.
J Prosthet Dent ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38061937

RESUMO

STATEMENT OF PROBLEM: While the high osteotomy and implant placement accuracy via robotic implant surgery has been verified, whether the force feedback in the osteotomy process can be used to determine appropriate primary implant stability remains unknown. PURPOSE: The purpose of this in vitro study was to explore the relationship between the force feedback and the primary stability of implants placed by using an autonomous dental implant robot. MATERIAL AND METHODS: Five groups (n=7) of wooden and polyurethane foam blocks were used to execute an implant surgery by using an autonomous implant robot. Tapered bone-level titanium dental implant replicas were placed in the blocks. The Young modulus, the maximal vertical and lateral drilling resistances, the position accuracy, and the insertion torque of implants were recorded. Simple linear regression, principal component analysis, and multiple linear regression were used. The osteotomy strategy for the implant site was adjusted according to the maximal vertical resistance of the pilot drill to achieve appropriate insertion torque. The correlation, Gompertz growth curve fitting of the insertion torque, and Young modulus were determined. The effect of the drilling resistances on the insertion torque was analyzed using 2-way ANOVA, simple linear regression, and the principal component analysis. RESULTS: The vertical resistance of the Ø2.2-mm pilot drill, the Ø3.5-mm twist drill, and the Ø4.1-mm profile drill had a strong simple linear correlation with the insertion torque of the implants, and the lateral resistance had a moderate linear correlation with the insertion torque. The contributions of these 6 variables to the implant torque, among which the vertical resistance of the twist drill and the pilot drill ranked first and second, were comparable. Adjustments to the strategy of site preparation according to the vertical resistance of the pilot drill achieved appropriate insertion torque (P<.001). CONCLUSIONS: The force feedback of the autonomous dental implant robot was significantly correlated with the insertion torque of implants, which may fit an interpretable mathematical model, allowing dental implants to be placed with predictable primary stability.

8.
J Prosthet Dent ; 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36473750

RESUMO

STATEMENT OF PROBLEM: Both the placement accuracy and primary stability of implants are important to implant therapy in the esthetic zone. The effect of dynamic and static computer-assisted navigation on the primary stability of implants in the esthetic zone remains uncertain. PURPOSE: The purpose of this case-control study was to investigate the effect of dynamic and static computer-assisted navigation on the placement accuracy and primary stability of implants in the esthetic zone. MATERIAL AND METHODS: Partially edentulous participants who received at least 1 implant in the anterior maxilla using either fully guided static or dynamic computer-assisted implant surgery (s-CAIS, d-CAIS) from January 2020 to February 2022 were screened. Participant demographic information, timing of implant placement, primary stability represented by the insertion torque value (ITV) in Ncm, and implant survival were collected from the treatment record. Bone quality at the implant sites was determined according to the Lekholm and Zarb classification. The accuracy of implant placement represented by the linear (platform: Dpl, mm; apex: Dap, mm) and angular deviations (axis: Dan, degree) between the planned and placed implants was evaluated based on the preoperative surgical plan and postoperative cone beam computed tomography (CBCT) data. A statistical analysis of the data was completed by using the chi-square, Fisher exact, Student t, and Mann-Whitney U tests (α=.05). RESULTS: A total of 32 study participants (38 implants) were included. The groups of s-CAIS (16 participants, 18 implants) and d-CAIS (16 participants, 20 implants) were statistically comparable in sex (P=.072), age (P=.548), bone quality (P=.671), and timing of implant placement (P=.719). All implants survived during an average follow-up period of 13 months. The d-CAIS group showed close linear deviations (Dpl 1.07 ±0.57 mm, Dap 1.26 ±0.53 mm) but lower angular deviation (Dan 2.14 ±1.20 degrees) and primary stability (ITV 25.25 ±7.52 Ncm) than the s-CAIS group (Dpl 0.92 ±0.46 mm, Dap 1.31 ±0.43 mm, Dan 3.31 ±1.61 degrees, ITV 30.56 ±11.23 Ncm, PDpl=.613, PDap=.743, PDan=.016, PITV=.028). CONCLUSIONS: Comparable linear positioning accuracy and higher angular deviation were found for implants placed in the esthetic zone by using s-CAIS than when using d-CAIS. Higher primary stability of implants may be achieved by using s-CAIS, as s-CAIS seemed to have higher osteotomy accuracy than d-CAIS.

9.
J Cell Mol Med ; 25(6): 3051-3062, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33580754

RESUMO

The homeobox gene, LIM-homeobox 8 (Lhx8), has previously been identified as an essential transcription factor for dental mesenchymal development. However, how Lhx8 itself is regulated and regulates odontogenesis remains poorly understood. In this study, we employed an RNAscope assay to detect the co-expression pattern of Lhx8 and Suv39h1 in the dental mesenchyme, which coincided with the dynamic expression profiles of the early epithelium signal of Fibroblast Growth Factor 8 (FGF8) and the later mesenchymal signal Bone Morphogenetic Protein 2 (BMP2). Moreover, FGF8 activated Lhx8, whereas BMP2 repressed Lhx8 expression at the transcriptional level. The high expression of Lhx8 in the early dental mesenchyme maintained the cell fate in an undifferentiated status by interacting with Suv39h1, a histone-lysine N-methyltransferase constitutively expressed in the dental mesenchyme. Further in the ex vivo organ culture model, the knockdown of Suv39h1 significantly blocked the function of Lhx8 and FGF8. Mechanistically, Lhx8/Suv39h1 recognized the odontoblast differentiation-related genes and repressed gene expression via methylating H3K9 on their promoters. Taken together, our data here suggest that Lhx8/Suv39h1 complex is inversely regulated by epithelium-mesenchymal signals, balancing the differentiation and proliferation of dental mesenchyme via H3K9 methylation.


Assuntos
Proteína Morfogenética Óssea 2/genética , Diferenciação Celular/genética , Fator 8 de Crescimento de Fibroblasto/genética , Proteínas com Homeodomínio LIM/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proliferação de Células , Polpa Dentária/citologia , Feminino , Fator 8 de Crescimento de Fibroblasto/metabolismo , Histonas , Humanos , Imuno-Histoquímica , Metilação , Camundongos , Complexos Multiproteicos/metabolismo , Odontogênese/genética , Ligação Proteica
10.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32641482

RESUMO

C3A is a subclone of the human hepatoblastoma HepG2 cell line with strong contact inhibition of growth. We fortuitously found that C3A was more susceptible to human coronavirus HCoV-OC43 infection than HepG2, which was attributed to the increased efficiency of virus entry into C3A cells. In an effort to search for the host cellular protein(s) mediating the differential susceptibility of the two cell lines to HCoV-OC43 infection, we found that ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2), gamma-interferon-inducible lysosome/endosome-localized thiolreductase (GILT), and lymphocyte antigen 6 family member E (LY6E), the three cellular proteins identified to function in interference with virus entry, were expressed at significantly higher levels in HepG2 cells. Functional analyses revealed that ectopic expression of LY6E, but not GILT or ADAP2, in HEK 293 cells inhibited the entry of HCoV-O43. While overexpression of LY6E in C3A and A549 cells efficiently inhibited the infection of HCoV-OC43, knockdown of LY6E expression in HepG2 significantly increased its susceptibility to HCoV-OC43 infection. Moreover, we found that LY6E also efficiently restricted the entry mediated by the envelope spike proteins of other human coronaviruses, including the currently pandemic SARS-CoV-2. Interestingly, overexpression of serine protease TMPRSS2 or amphotericin treatment significantly neutralized the IFN-inducible transmembrane 3 (IFITM3) restriction of human coronavirus (CoV) entry, but did not compromise the effect of LY6E on the entry of human coronaviruses. The work reported herein thus demonstrates that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis via a mechanism distinct from other factors that modulate CoV entry.IMPORTANCE Virus entry into host cells is one of the key determinants of host range and cell tropism and is subjected to the control of host innate and adaptive immune responses. In the last decade, several interferon-inducible cellular proteins, including IFITMs, GILT, ADAP2, 25CH, and LY6E, had been identified to modulate the infectious entry of a variety of viruses. Particularly, LY6E was recently identified as a host factor that facilitates the entry of several human-pathogenic viruses, including human immunodeficiency virus, influenza A virus, and yellow fever virus. Identification of LY6E as a potent restriction factor of coronaviruses expands the biological function of LY6E and sheds new light on the immunopathogenesis of human coronavirus infection.


Assuntos
Antígenos de Superfície/metabolismo , Betacoronavirus/fisiologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Interações Hospedeiro-Patógeno , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Internalização do Vírus , Sequência de Aminoácidos , Anfotericina B/farmacologia , Betacoronavirus/efeitos dos fármacos , COVID-19 , Linhagem Celular , Coronavirus/efeitos dos fármacos , Infecções por Coronavirus/epidemiologia , Suscetibilidade a Doenças , Evolução Molecular , Proteínas Ligadas por GPI/metabolismo , Humanos , Pandemias , Pneumonia Viral/epidemiologia , Sinais Direcionadores de Proteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32661139

RESUMO

The COVID-19 pandemic has caused an unprecedented global public health and economic crisis. The origin and emergence of its causal agent, SARS-CoV-2, in the human population remains mysterious, although bat and pangolin were proposed to be the natural reservoirs. Strikingly, unlike the SARS-CoV-2-like coronaviruses (CoVs) identified in bats and pangolins, SARS-CoV-2 harbors a polybasic furin cleavage site in its spike (S) glycoprotein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as its receptor to infect cells. Receptor recognition by the S protein is the major determinant of host range, tissue tropism, and pathogenesis of coronaviruses. In an effort to search for the potential intermediate or amplifying animal hosts of SARS-CoV-2, we examined receptor activity of ACE2 from 14 mammal species and found that ACE2s from multiple species can support the infectious entry of lentiviral particles pseudotyped with the wild-type or furin cleavage site-deficient S protein of SARS-CoV-2. ACE2 of human/rhesus monkey and rat/mouse exhibited the highest and lowest receptor activities, respectively. Among the remaining species, ACE2s from rabbit and pangolin strongly bound to the S1 subunit of SARS-CoV-2 S protein and efficiently supported the pseudotyped virus infection. These findings have important implications for understanding potential natural reservoirs, zoonotic transmission, human-to-animal transmission, and use of animal models.IMPORTANCE SARS-CoV-2 uses human ACE2 as a primary receptor for host cell entry. Viral entry mediated by the interaction of ACE2 with spike protein largely determines host range and is the major constraint to interspecies transmission. We examined the receptor activity of 14 ACE2 orthologs and found that wild-type and mutant SARS-CoV-2 lacking the furin cleavage site in S protein could utilize ACE2 from a broad range of animal species to enter host cells. These results have important implications in the natural hosts, interspecies transmission, animal models, and molecular basis of receptor binding for SARS-CoV-2.


Assuntos
Doenças dos Animais/metabolismo , Doenças dos Animais/virologia , Betacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Pandemias/veterinária , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/veterinária , Receptores Virais/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Betacoronavirus/classificação , COVID-19 , Linhagem Celular , Especificidade de Hospedeiro , Humanos , Modelos Moleculares , Mutação , Peptidil Dipeptidase A/química , Filogenia , Ligação Proteica , Domínios Proteicos , Proteólise , Receptores Virais/química , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Relação Estrutura-Atividade , Tropismo Viral , Internalização do Vírus
12.
BMC Oral Health ; 21(1): 539, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666731

RESUMO

BACKGROUND: Early clinical cracked tooth can be a perplexing disorder to diagnose and manage. One of the key problems for the diagnosis of the cracked tooth is the detection of the location of the surface crack. METHODS: This paper proposes an image-based method for the detection of the micro-crack in the simulated cracked tooth. A homemade three-axis motion platform mounted with a telecentric lens was built as an image acquisition system to observe the surface of the simulated cracked tooth, which was under compression with a magnitude of the masticatory force. By using digital image correlation (DIC), the deformation map for the crown surface of the cracked tooth was calculated. Through image analysis, the micro-crack was quantitatively visualized and characterized. RESULTS: The skeleton of the crack path was successfully extracted from the image of the principal strain field, which was further verified by the image from micro-CT. Based on crack kinematics, the crack opening displacement was quantitatively calculated to be 2-10 µm under the normal mastication stress, which was in good agreement with the value reported in the literature. CONCLUSIONS: The crack on the surface of the simulated cracked tooth could be detected based on the proposed DIC-based method. The proposed method may provide a new solution for the rapid clinical diagnosis of cracked teeth and the calculated crack information would be helpful for the subsequent clinical treatment of cracked teeth.


Assuntos
Síndrome de Dente Quebrado , Fraturas dos Dentes , Dente , Síndrome de Dente Quebrado/diagnóstico , Coroas , Humanos , Microtomografia por Raio-X
13.
J Periodontal Res ; 55(3): 342-353, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31853997

RESUMO

BACKGROUND AND OBJECTIVE: Peri-implantitis is a biofilm-mediated infectious disease that results in progressive loss of implant-supporting bone. As compared to its analogue periodontitis, peri-implantitis is generally known to be more aggressive, with comparatively rapid progression and less predictable treatment outcomes, especially when advanced. An understanding of molecular mechanisms underpinning the similarities and differences between peri-implantitis and periodontitis is essential to develop novel management strategies. This study aimed to compare long non-coding RNAs (lncRNAs) and messenger RNA (mRNA) expression profiles between peri-implantitis and periodontitis. METHODS: Inflamed soft tissue from peri-implantitis and periodontitis lesions, and healthy gingival tissue controls were analyzed by microarray. Cluster graphs, gene ontology (GO) analysis, and pathway analysis were performed. Quantitative real-time PCR was employed to verify microarray results. The expression levels of RANKL and OPG in the three tissue types were also evaluated, using qRT-PCR. Coding non-coding (CNC) network analyses were performed. RESULTS: Microarray analyses revealed 1079 lncRNAs and 1003 mRNAs as differentially expressed in peri-implantitis when compared to periodontitis. The cyclooxygenase-2 pathway was the most up-regulated biological process in peri-implantitis as compared to periodontitis, whereas hemidesmosome assembly was the most down-regulated pathway. Osteoclast differentiation was relatively up-regulated, and RANKL/OPG ratio was higher in peri-implantitis than in periodontitis. CONCLUSIONS: The study demonstrated that peri-implantitis and periodontitis exhibit significantly different lncRNA and mRNA expression profiles, suggesting that osteoclast differentiation-related pathways are comparatively more active in peri-implantitis. These data highlight potential molecular targets for periodontitis and peri-implantitis therapy development.


Assuntos
Implantes Dentários , Peri-Implantite/genética , Periodontite/genética , RNA Longo não Codificante , RNA Mensageiro , Ontologia Genética , Gengiva , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
14.
Calcif Tissue Int ; 104(4): 461-474, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30623241

RESUMO

Osteoprotegerin (OPG) is one of the protective factors of bony tissue. However, the function of OPG in cartilage tissues remains elusive. The aim of this study is to explore the function of OPG in the postnatal maintenance and the occurring of osteoarthritis (OA) of temporomandibular joint (TMJ) in the rodent models. We found that OPG expressed in the hypertrophic layer of the condylar cartilage and upregulated in the hyperocclusion-induced-TMJ-trauma rat. In the absence of OPG, the cartilage degradation occurred prior to that in WT mice, and the 3-month-old OPG-Knockout (OPG-KO) condyle showed decreased chondrocyte proliferation and increased chondrocyte apoptosis, whereas the number of chondroclasts was comparable to WT condyle. The isolated chondrocytes from the OPG-KO mice also showed impaired survival and promoted chondrogenic differentiation. Furthermore, the hyperocclusion model deteriorated TMJ degradation in the OPG-KO mice. OPG plays a protective role in the condylar chondrocytes' survival, and it is required for the postnatal maintenance of TMJ.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Côndilo Mandibular/metabolismo , Osteoprotegerina/metabolismo , Animais , Cartilagem Articular/patologia , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Côndilo Mandibular/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/metabolismo , Articulação Temporomandibular/metabolismo
15.
Cell Commun Signal ; 16(1): 70, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348174

RESUMO

BACKGROUND: Benign Lymphoepithelial Lesion (BLEL) is a rare disease observed in the adult population. Despite the growing numbers of people suffering from BLEL, the etiology and mechanisms underlying its pathogenesis remain unknown. METHODS: In the present study, we used gene and cytokines expression profiling, western blot and immunohistochemistry to get further insight into the cellular and molecular mechanisms involved in the pathogenesis of BLEL of the lacrimal gland. RESULTS: The results showed that Macrophage Migration Inhibitory Factor (MIF) was the most highly expressed cytokine in BLEL, and its expression positively correlated with the expression of Th2 and Th17 cells cytokines. MIF was found to regulate biological functions and pathways involved in BLEL pathogenesis, such as proliferation, resistance to apoptosis, MAPK and PI3K/Akt pathways. We also found that MIF promotes fibrosis in BLEL by inducing BLEL fibroblast differentiation into myofibroblasts as well as the synthesis and the deposit of extracellular matrix in BLEL tissues. CONCLUSIONS: Our findings demonstrate the contribution of MIF to the pathogenesis of BLEL of the lacrimal gland and suggested MIF as a promising therapeutic target for its treatment.


Assuntos
Aparelho Lacrimal/patologia , Linfócitos/patologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Adulto , Idoso , Citocinas/genética , Epitélio/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
EMBO Rep ; 17(8): 1155-68, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27312109

RESUMO

Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are cytoplasmic sensors crucial for recognizing different species of viral RNAs, which triggers the production of type I interferons (IFNs) and inflammatory cytokines. Here, we identify RING finger protein 123 (RNF123) as a negative regulator of RIG-I and MDA5. Overexpression of RNF123 inhibits IFN-ß production triggered by Sendai virus (SeV) and encephalomyocarditis picornavirus (EMCV). Knockdown or knockout of endogenous RNF123 potentiates IFN-ß production triggered by SeV and EMCV, but not by the sensor of DNA viruses cGAS RNF123 associates with RIG-I and MDA5 in both endogenous and exogenous cases in a viral infection-inducible manner. The SPRY and coiled-coil, but not the RING, domains of RNF123 are required for the inhibitory function. RNF123 interacts with the N-terminal CARD domains of RIG-I/MDA5 and competes with the downstream adaptor VISA/MAVS/IPS-1/Cardif for RIG-I/MDA5 CARD binding. These findings suggest that RNF123 functions as a novel inhibitor of innate antiviral signaling mediated by RIG-I and MDA5, a function that does not depend on its E3 ligase activity.


Assuntos
Proteína DEAD-box 58/metabolismo , Resistência à Doença , Interações Hospedeiro-Patógeno , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta , Camundongos , Ligação Proteica , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Receptores Imunológicos
17.
Ecotoxicol Environ Saf ; 154: 145-153, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29459164

RESUMO

Toxicological effect of freshwater algae co-exposure to Cd and 4-n-nonylphenol (4-n-NP) was seldom reported. In the present study, Chlorella sorokiniana was selected for testing the single and combined effect of Cd and 4-n-NP by detecting the growth inhibition and oxidative stress after exposure for 48 h, 72 h, and 96 h. The combined effects were evaluated by using toxic units (TU) method and concentration addition(CA)model. The synergistic effect of mixture on algal growth inhibition was both observed at 48 h and 72 h, and the additive effect was observed at 96 h. In addition, the significant alterations of superoxide, thiobarbituric acid reactive substances and antioxidant defenses (superoxide dismutase, catalase, glutathione) have been detected. It could be observed that the mixture predominantly lead to synergistic effects in superoxide induction, and the antagonistic effects in the GSH induction. A similar trend between the superoxide induction and growth inhibition were observed, which may indicate that the oxidative effects of Chlorella sorokiniana contributed to the growth inhibition after exposure to Cd and 4-n-NP. These findings may have important implications in the risk assessments of heavy metals and endocrine disruptors in the aquatic environment.


Assuntos
Cádmio/toxicidade , Chlorella/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fenóis/toxicidade , Antioxidantes/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/metabolismo , Oxirredução , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
18.
Cell Biol Int ; 41(1): 8-15, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27671240

RESUMO

Sympathetic signaling is involved in bone homeostasis; however, the cellular and molecular mechanisms remain unknown. In this study, we found that the psychological stress mediator adrenaline inhibited osteogenic differentiation of human bone marrow-derived stem cells (hMSC) by reducing microRNA-21 (miR-21) expression. Briefly, adrenaline significantly inhibited the osteogenic differentiation of hMSCs, as observed with both Alizarin red staining and maker gene expression (RUNX2, OSX, OCN, and OPN). During this process, miR-21 was suppressed by adrenaline via inhibition of histone acetylation, as verified by H3K9Ac chromatin immunoprecipitation (ChIP) assay. MiR-21 was confirmed to promote hMSC osteogenic differentiation, and overexpression of miR-21 reversed the impeditive effect of adrenaline on hMSC osteogenic differentiation. Our results demonstrate that down-regulation of miR-21 is responsible for the adrenaline-mediated inhibition of hMSC osteogenic differentiation. These findings indicate a regulation of bone metabolism by psychological stress and also provide a molecular basis for psychological stress-associated bone diseases.


Assuntos
Epinefrina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Osteogênese/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Histonas/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese/genética
19.
J Virol ; 87(18): 10037-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23843640

RESUMO

Retinoic acid-inducible gene I (RIG-I) is a key sensor for recognizing nucleic acids derived from RNA viruses and triggers beta interferon (IFN-ß) production. Because of its important role in antiviral innate immunity, the activity of RIG-I must be tightly controlled. Here, we used yeast two-hybrid screening to identify a SEC14 family member, SEC14L1, as a RIG-I-associated negative regulator. Transfected SEC14L1 interacted with RIG-I, and endogenous SEC14L1 associated with RIG-I in a viral infection-inducible manner. Overexpression of SEC14L1 inhibited transcriptional activity of the IFN-ß promoter induced by RIG-I but not TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Knockdown of endogenous SEC14L1 in both HEK293T cells and HT1080 cells potentiated RIG-I and Sendai virus-triggered IFN-ß production as well as attenuated the replication of Newcastle disease virus. SEC14L1 interacted with the N-terminal domain of RIG-I (RIG-I caspase activation and recruitment domain [RIG-I-CARD]) and competed with VISA/MAVS/IPS-1/Cardif for RIG-I-CARD binding. Domain mapping further indicated that the PRELI-MSF1 and CRAL-TRIO domains but not the GOLD domain of SEC14L1 are required for interaction and inhibitory function. These findings suggest that SEC14L1 functions as a novel negative regulator of RIG-I-mediated antiviral signaling by preventing RIG-I interaction with the downstream effector.


Assuntos
Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/imunologia , Vírus da Doença de Newcastle/imunologia , RNA Viral/imunologia , Vírus Sendai/imunologia , Transdução de Sinais , Proteínas de Transporte/genética , Linhagem Celular , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Regulação para Baixo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Viral/metabolismo , Receptores Imunológicos , Técnicas do Sistema de Duplo-Híbrido
20.
J Biol Methods ; 11: e99010009, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988498

RESUMO

The rapid identification SARS-CoV-2 virus has become the basis for the control of the COVID-19 outbreak. The rapid antigen tests for SARS-CoV-2 are quick, widely available, and inexpensive. Rapid antigen tests have gradually replaced the time-consuming and costly RT-PCR. Currently, although several RAT kits have been extensively used for the diagnosis of COVID-19, validity data are limited due to the inconsistent sensitivity and poor reproducibility. Meanwhile, WHO does not recommend specific commercial RAT kits. Therefore, it is crucial to establish a method to evaluate the effectiveness of different rapid antigen tests kits. This study aimed to develop an evaluation system for rapid antigen tests to provide an efficient and accurate technique for screening SARS-CoV-2 antigen detection kits. Given large number of rapid antigen tests kits available, this study only focused on those that are representative and commonely used in China. By minimzing biases through randomization, concealment, and blinding, we eventually found that the Test 1 had the lowest sensitivity and the Test VI had the highest sensitivity. This study provided an evaluation platform that can potentially serve as a reference for COVID-19 diagnostic strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA