Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(14): 7866-7872, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403749

RESUMO

2D perovskites with chemical formula A'2 An-1 Bn X3n+1 have recently attracted considerable attention due to their tunable optical and electronic properties, which can be attained by varying the chemical composition. While high color-purity emitting perovskite nanomaterials have been accomplished through changing the halide composition, the preparation of single-phase, specific n-layer 2D perovskite nanomaterials is still pending because of the fast nucleation process of nanoparticles. We demonstrate a facile, rational and efficacious approach to synthesizing single-phase 2D perovskite nanoplates with a designated n number for both lead- and tin-based perovskites through kinetic control. Casting carboxylic acid additives in the reaction medium promotes selective formation of the kinetic product-multilayer 2D perovskite-in preference to the single-layer thermodynamic product. For the n-specific layered 2D perovskites, decreasing the number of octahedral layers per inorganic sheet leads to an increase of photoluminescence energy, radiative decay rate, and a significant boost in photostability.

2.
Angew Chem Int Ed Engl ; 60(39): 21434-21440, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34319649

RESUMO

Through the incorporation of various halogen-substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic-inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl-substituted chiral cation exhibits the highest circular dichroism (CD) and circular polarized luminescence (CPL) intensities, indicating the existence of the largest rotatory strength, whereas the F-substituted HIOP shows the weakest intensities. The observed modulation can be correlated to the varied magnetic transition dipole of HOIPs, which is sensitive to the d-spacing between inorganic layers and the halogen-halogen interaction between organic cations and the inorganic sheets. These counteracting effects meet the optimal CD and CPL intensity with chlorine substitution, rendering the rotatory strength of HOIPs arranged in the order of (ClMBA)2 PbI4 >(BrMBA)2 PbI4 >(IMBA)2 PbI4 >(MBA)2 PbI4 >(FMBA)2 PbI4 .

3.
J Am Chem Soc ; 142(16): 7469-7479, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32223139

RESUMO

Dinuclear Pt(III) complexes were commonly reported to have short-lived lowest-lying triplet states, resulting in extremely weak or no photoluminescence. To overcome this obstacle, a new series of dinuclear Pt(III) complexes, named Pt2a-Pt2c, were strategically designed and synthesized using donor (D)-acceptor (A)-type oxadiazole-thiol chelates as bridging ligands. These dinuclear Pt(III) complexes possess a d7-d7 electronic configuration and exhibit intense phosphorescence under ambient conditions. Among them, Pt2a exhibits orange phosphorescence maximized at 618 nm in degassed dichloromethane solution (Φp ≈ 8.2%, τp ≈ 0.10 µs) and near-infrared (NIR) emission at 749 nm (Φp ≈ 10.1% τp ≈ 0.66 µs) in the crystalline powder and at 704 nm (Φp ≈ 33.1%, τp ≈ 0.34 µs) in the spin-coated neat film. An emission blue-shifted by more than 3343 cm-1 is observed under mechanically ground crystalline Pt2a, affirming intermolecular interactions in the solid states. Time-dependent density functional theory (TD-DFT) discloses the lowest-lying electronic transition of Pt2a-Pt2c complexes to be a bridging ligand-metal-metal charge transfer (LMMCT) transition. The long-lived triplet states of these dinuclear platinum(III) complexes may find potential use in lighting. Employing Pt2a as an emitter, high-performance organic light-emitting diodes (OLEDs) were fabricated with NIR emission at 716 nm (η = 5.1%), red emission at 614 nm (η = 8.7%), and white-light emission (η = 11.6%) in nondoped, doped (in mCP), and hybrid (in CzACSF) devices, respectively.

4.
Chemistry ; 26(31): 7124-7130, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32149442

RESUMO

The weak fluorescence (quantum yield <1 % in cyclohexane) of phenothiazine (PTZ) impedes its further application. In addition, the nitro group (NO2 ) is a well-known fluorescence quencher. Interestingly, we obtained a highly fluorescent chromophore by combining these two moieties, forming 3-nitrophenothiazine (PTZ-NO2 ). For comparison, a series of PTZ derivatives bearing electron-withdrawing groups (EWGs; CN and CHO) or electron-donating groups (EDGs; OMe) at the 3-position have been designed and synthesized. The phenothiazines bearing EWGs exhibited enhanced emission compared with the parent PTZ or EDG derivatives. Computational approaches unveiled that for PTZ and PTZ-OMe, the transitions are from HOMOs dominated by π orbitals to LUMOs of mixed sulfur nonbonding-π* orbitals, and hence are partially forbidden. In contrast, the EWGs lower the energy level of the lone-pair electrons on the sulfur atom, thereby suppressing the mixing of the nonbonding orbital with the π* orbital in the LUMO, such that the allowed ππ* transition becomes dominant. This work thus demonstrates a judicious chemical design to fine-tune the transition character in PTZ analogues, with PTZ-NO2 attaining 100 % emission quantum yields in nonpolar solvent.

5.
J Am Chem Soc ; 141(13): 5535-5543, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30835458

RESUMO

A series of platinum(II) metallacycles were prepared via the coordination-driven self-assembly of a phenazine-cored dipyridyl donor with a 90° Pt(II) acceptor and various dicarboxylate donors in a 1:1:2 ratio. While the metallacycles display similar absorption profiles, they exhibit a trend of blue-shifted fluorescence emission with the decrease in the bite angles between the carboxylate building blocks. Comprehensive spectroscopic and dynamic studies as well as a computational approach were conducted, revealing that the difference in the degree of constraint imposed on the excited-state planarization of the phenazine core within these metallacycles results in their distinct photophysical behaviors. As such, a small initial difference in the dicarboxylate building blocks is amplified into distinct photophysical properties of the metallacycles, which is reminiscent of the efficient functional tuning observed in natural systems. In addition to the pre-assembly approach, the photophysical properties of a metallacycle can also be modulated using a post-assembly modification to the dicarboxylate building block, suggesting another strategy for functional tuning. This research illustrated the potential of coordination-driven self-assembly for the preparation of materials with precisely tailored functionalities at the molecular level.


Assuntos
Fluorescência , Compostos Organometálicos/síntese química , Fenazinas/química , Platina/química , Conformação Molecular , Compostos Organometálicos/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
6.
J Am Chem Soc ; 141(25): 9885-9894, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31244136

RESUMO

We report O-H----S hydrogen-bond (H-bond) formation and its excited-state intramolecular H-bond on/off reaction unveiled by room-temperature phosphorescence (RTP). In this seminal work, this phenomenon is demonstrated with 7-hydroxy-2,2-dimethyl-2,3-dihydro-1 H-indene-1-thione (DM-7HIT), which possesses a strong polar (hydroxy)-dispersive (thione) type H-bond. Upon excitation, DM-7HIT exhibits anomalous dual RTP with maxima at 550 and 685 nm. This study found that the lowest lying excited state (S1) of DM-7HIT is a sulfur nonbonding (n) to π* transition, which undergoes O-H bond flipping from S1(nπ*) to the non-H-bonded S'1(nπ*) state, followed by intersystem crossing and internal conversion to populate the T'1(nπ*) state. Fast H-bond on/off switching then takes place between T'1(nπ*) and T1(nπ*), forming a pre-equilibrium that affords both the T'1(nπ*, 685 nm) and T1(nπ*, 550 nm) RTP. The generality of the sulfur H-bond on/off switching mechanism, dubbed a molecule wiper, was rigorously evaluated with a variety of other H-bonded thiones, and these results open a new chapter in the chemistry of hydrogen bonds.

7.
J Am Chem Soc ; 141(26): 10324-10330, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244186

RESUMO

Tin perovskite nanomaterial is one of the promising candidates to replace organic lead halide perovskites in lighting applications. Unfortunately, the performance of tin-based systems is markedly inferior to those featuring toxic Pb salts. In an effort to improve the emission quantum efficiency of nanoscale 2D layered tin iodide perovskites through fine-tuning the electronic property of organic ammonium salts, we came to unveil the relationship between dielectric confinement and the photoluminescent properties of tin iodide perovskite nanodisks. Our results show that increasing the dielectric contrast for organic versus inorganic layers leads to a bathochromic shift in emission peak wavelength, a decrease of exciton recombination time, and importantly a significant boost in the emission efficiency. Under optimized conditions, a leap in emission quantum yield to a record high 21% was accomplished for the nanoscale thienylethylammonium tin iodide perovskite (TEA2SnI4). The as-prepared TEA2SnI4 also possessed superior photostability, showing no sign of degradation under continuous irradiation (10 mW/cm2) over a period of 120 h.

8.
Chemistry ; 25(72): 16755-16764, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31663166

RESUMO

With the aim of generalizing the structure-properties relationship of bending heterocyclic molecules that undergo prominent photoinduced structural planarization (PISP), a series of new dihydrodibenzo[ac]phenazine derivatives in which one nitrogen atom is replaced by oxygen (PNO), sulfur (PNS), selenium (PNSe), or dimethylmethanediyl (PNC) was strategically designed and synthesized. Compounds PNO, PNS, and PNSe have significantly nonplanar geometries in the ground state, which undergo PISP to give a planarlike conformer and hence a large emission Stokes shift. A combination of femtosecond early relaxation dynamics and computational approaches established an R*→I* (intermediate)→P* sequential kinetic pattern for PNS and PNSe, whereas PNO undergoes R*→P* one-step kinetics. The polarization ability of the substituted heteroatoms, which is in the order O

9.
Angew Chem Int Ed Engl ; 58(38): 13297-13301, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31334586

RESUMO

Phenothiazine derivatives based on the 10-phenyl-10H-phenothiazine (NAS) chromophore, namely 7-phenyl-7H-benzo[c]phenothiazine (NAS-1) and 12-phenyl-12H-benzo[a]phenothiazine (NAS-2), were designed and synthesized. NAS-1 and NAS-2 are constitutional isomers with different steric strains imposed on the phenothiazine core moiety. In solution, the more-strained NAS-2 possesses a bent structure and undergoes photoinduced structural planarization (PISP). In the crystal, despite the absence of PISP, bent NAS-2 exhibits prominent excimer emission as well as emission mechanochromism, which is not observed in the planar-like NAS and NAS-1. This unconventional observation results from the bent core structure facilitating π-π stacking of the peripheral naphthalene moieties. Two-photon-coupled depth-dependent emission shows spectral differences between the surface and kernel of the NAS-2 crystal, and is believed to be a general phenomenon, at least in part, for materials exhibiting emission mechanochromism.

10.
J Mater Chem B ; 10(32): 6228-6236, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35920213

RESUMO

Development of photosensitizers (PSs) featuring type-I reactive oxygen species (ROS) with aggregation-induced emission (AIE) properties is a judicious approach to overcome the deficit of conventional photodynamic therapy (PDT). However, it remains a challenge to design AIE-active type-I ROS PSs using a simple theranostic scaffold paired with a delicate balance between intramolecular charge transfer (ICT) and large spin-orbit coupling (SOC) features to facilitate intersystem crossing (ISC) and hence to intensify triplet excitons for type-I ROS generation as well as to improve optical properties for the desired biomedical applications. In this work, a rationally designed series of PSs based on C-6-substituted tetraphenylethylene-fused benzothiazole-coumarin scaffolds, named TPE-nCUMs, were synthesized via a fused-ring-electron-acceptor (FREA) strategy, endowed with AIE properties in aqueous solution and thus self-monitoring type-I ROS generation under white-light irradiation to study the effects of diverse ICT and SOC potentials on their photochemical and optical properties. Both experimental and theoretical results revealed that the concomitantly increasing strengths of both ICT and SOC features promote type-I ROS generation by TPE-nCUMs. The key role of the SOC-promoting carbonyl group towards the ROS generation ability of TPE-nCUMs was then examined. Among TPE-nCUMs, gem-2OMe-TPE-2CUM displayed highly efficient type-I ROS generation. Importantly, gem-OMe-TPE-1CUM acts as a fluorescent indicator in HeLa cells (in vitro), revealing its excellent diffusion capability in both lysosomal and mitochondrial organelles with low dark toxicity, high cytotoxicity under white-light and remarkable PDT efficiency. Our study has thus elucidated a rationally designed strategy at the molecular level to fine-tune ICT and SOC features for the advance of AIE-active type-I ROS PSs, opening a new avenue for cancer treatment and image-guided therapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Células HeLa , Humanos , Luz , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio
11.
Chempluschem ; 86(1): 11-27, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33094565

RESUMO

Apart from numerous applications, for example in azo dye precursors, explosives, and industrial processes, the nitro group (-NO2 ) appears on countless molecules in photochemical research owing to its unique characteristics such as a strong electron-withdrawing ability and facile conversion to the reduced substituent. Although it is well known as a fluorescence quencher, fluorescent chromophores that contain the nitro group have also emerged, with 3-nitrophenothiazine being recently reported to have 100 % emission quantum yield in nonpolar solvents. The diverse characters of nitro-containing chromophores motivated us to systematically review those chromophores with nitro substituents, their associated photophysical properties, and applications. In this Review, we succinctly elaborate the advance of the fluorescent nitro chromophores in fields of intramolecular charge transfer, fluorescent probes and nonlinear properties. Special attention is paid to the rationalization of the associated emission spectroscopy, so that the readers can gain insights into the structure-photophysics relationship and hence gain insights for the strategic design of nitro chromophores.

12.
J Phys Chem B ; 125(41): 11557-11565, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34633826

RESUMO

A judicious strategy was utilized to envision the substantial regio-positional effects of substituents on the photophysical properties of the 2H-chromen-2-one-3-benzothiazole scaffold-based push-pull framework, named 6-X-CUMs. Among them, 6-NEt2-CUM reveals prominent excited-state intramolecular charge transfer with a large change of dipole moment (Δµ ∼ 18.23 D), hence displaying remarkable emission solvatochromism from the green (536 nm in cyclohexane) to far-red region (714 nm in dimethyl sulfoxide) and a high-temperature sensitivity (-0.23 nm °C-1). These, together with unique basicity and acido-/vaporchromism upon acidification elucidated by NMR and photospectroscopic studies, show stark contrast to the conventional 7-NEt2-CUM. The new series of these tailored 6-X-CUMs represents a new dimension in tailoring the photophysical properties for the development of a promising class of multistimuli-responsive materials.


Assuntos
Cumarínicos , Solventes
13.
J Phys Chem Lett ; 12(31): 7482-7489, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342467

RESUMO

In organic and organometallic solids, upon electronic excitation, most intermolecular structural relaxations follow a pathway along the π-π stacking direction or metal-metal bond with significant coupling strength. Differently, we discovered that the self-assembled platinum(II) complexes, Pt(fppz)2, exhibit an unusual interchain contraction. The ground-state and excited-state multiple local minima were distinguished by temperature-dependent excitation/emission spectra, indicating the existence of multiple local minima. The time-resolved emission decay revealed the excited-state structural relaxation lifetime with τobs = 41 ns at 298 K. Temperature-dependent X-ray diffraction analysis showed that the packing geometries contract 0.6 Å along the interchain direction (a-axis) at 50 K compared to the geometries at 298 K. Such structural displacements render the slow internal conversion rate in the excited states. We thus demonstrate the correlation between the packing geometries and the excited-state dynamics of the self-assembled Pt(II) complexes, shedding light on the unique direction of interchain structural deformation of the molecular aggregates.

14.
Nat Commun ; 11(1): 2145, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358521

RESUMO

The correlation between molecular packing structure and its room-temperature phosphorescence (RTP), hence rational promotion of the intensity, remains unclear. We herein present racemism enhanced RTP chiral chromophores by 2,2-bis-(diphenylphosphino)-1,1-napthalene (rac-BINAP) in comparison to its chiral counterparts. The result shows that rac-BINAP in crystal with denser density, consistent with a long standing Wallach's rule, exhibits deeper red RTP at 680 nm than that of the chiral counterparts. The cross packing between alternative R- and S- forms in rac-BINAP crystal significantly retards the bimolecular quenching pathway, triplet-triplet annihilation (TTA), and hence suppresses the non-radiative pathway, boosting the RTP intensity. The result extends the Wallach's rule to the fundamental difference in chiral-photophysics. In electroluminescence, rac-BINAP exhibits more balanced fluorescence versus phosphorescence intensity by comparison with that of photoluminescence, rendering a white-light emission. The result paves an avenue en route for white-light organic light emitting diodes via full exploitation of intrinsic fluorescence and phosphorescence.

15.
ACS Appl Mater Interfaces ; 12(1): 1084-1093, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31825583

RESUMO

A series of charge-neutral bis-tridentate Ir(III) complexes (1, 3, and 4) were prepared via employing three distinctive tridentate prochelates, that is, (pzptBphFO)H2, [(phpyim)H2·(PF6)], and [(pimb)H3·(PF6)2], which possess one dianionic pzptBphFO, together with a second monoanionic tridentate chelate, namely, (pzptBphFO)H, phpyim, and pimb, respectively. Moreover, a homoleptic, charge-neutral complex 2 was obtained by methylation of chelating (pzptBphFO)H of 1 in basic media, while closely related cationic complexes 5-7 were obtained by further methylation of the remaining pyrazolate unit of previously mentioned neutral complexes 2-4, followed by anion metatheses. All of these Ir(III) metal complexes showed a broadened emission profile with an onset at ∼450 nm, a result of an enlarged ligand-centered ππ* transition gap, but with distinct efficiencies ranging from 0.8% to nearly unity. Comprehensive spectroscopic and computational approaches were executed, providing a correlation for the emission efficiencies versus energy gaps and between the metal-to-ligand charge transfer/ππ* emitting excited state and upper-lying metal-centered dd quenching state. Furthermore, Ir(III) complexes 3 and 4 were selected as dopant emitters in the fabrication of sky-blue phosphorescent organic light-emitting diodes, affording maximum external quantum efficiencies of 16.7 and 14.6% with CIEx,y coordinates of (0.214, 0.454) and (0.191, 0.404) at a current density of 102 cd/m2, respectively. Hence, this research highlights an inherent character of bis-tridentate Ir(III) complexes in achieving high phosphorescence quantum yield at the molecular level.

16.
ACS Appl Mater Interfaces ; 12(2): 2724-2732, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846297

RESUMO

A strategic approach combining a new co-host system and low concentration of new thermally activated delayed fluorescence (TADF) emitters to make efficient blue TADF organic light-emitting diode (OLED) was developed. The benchmark TADF molecule, 4CzIPN, was adopted as a probe to examine the feasibility of a co-host composing of a hole transporter SimCP and an electron transporter oCF3-T2T. As a result, a sky blue device with 1 wt % 4CzIPN doped in SimCP:oCF3-T2T co-host exhibited 100% energy transfer and achieved a high external quantum efficiency (EQE) up to 26.1%. Importantly, this device showed a limited efficiency rolloff with an EQE of 24% at 1000 cd m-2. To further shift the emission toward blue, three new TADF molecules, 4CzIPN-CF3, 3CzIPN-H-CF3, and 3CzIPN-CF3, modified either by lowering the electron-withdrawing ability of the acceptor group or by reducing the number of carbazole donors of 4CzIPN, have been synthesized and characterized. Among them, 4CzIPN-CF3 and 3CzIPN-H-CF3 display hypsochromic shift emissions compared to that of 4CzIPN. These new compounds were then explored for their potential applications as TADF emitters. Blue TADF OLEDs with 1 wt % of 4CzIPN-CF3 and 3CzIPN-H-CF3 dispersed in SimCP:oCF3-T2T co-host achieved EQEs of 23.1 and 16.5% and retained high EQEs of 20.9 and 14.7% at 1000 cd m-2, respectively.

17.
ACS Appl Mater Interfaces ; 10(40): 34435-34442, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30222304

RESUMO

Two new nonconjugated linked dicarbazole materials, dCzPSi and dCzPSO2, with high triplet energy were synthesized and characterized. dCzPSi and dCzPSO2 were adopted as unipolar host materials for the green thermally activated delayed fluorescence (TADF) emitter (4CzIPN) to achieve high-efficiency organic light-emitting diodes (OLEDs). The electron-transporting acceptor, PO-T2T, was introduced to mix with dCzPSi and dCzPSO2 to give two new exciplex-forming systems that can improve the exciton formation propensity in the emitting layer. The relevant properties of these new exciplexes were characterized, and they were suggested as promising cohosts for the green TADF emitter, 4CzIPN. The characteristics of the devices employing single hosts (dCzPSi and dCzPSO2) and exciplex-forming cohosts (dCzPSi:PO-T2T and dCzPSO2:PO-T2T) were explored. The obtained results indicate that the Si-bridged dicarbazole compound dCzPSi outperforms its counterpart dCzPSO2 in which two carbazole groups are linked by an SO2 group. The device employed with the dCzPSi:PO-T2T cohost with 10 wt % 4CzIPN achieved a low Von of 2.2 V and maximum efficiencies of 21.1% (external quantum efficiency), 56.4 cd A-1 (current efficiency), 59.1 lm W-1 (power efficiency), as compared to those (18.7%, 56.6 cd A-1, and 68.5 lm W-1) of the dCzPSO2:PO-T2T-hosted device. This work verifies the advantages of using a cohost that can form an exciplex for boosting the device efficiency with reduced efficiency roll-off of TADF-based OLEDs.

18.
ACS Appl Mater Interfaces ; 10(15): 12886-12896, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29582654

RESUMO

We report the unprecedented dual properties of excited-state structural planarization and thermally activated delayed fluorescence (TADF) of 10-dimesitylboryl phenoxazine, i.e., PXZBM. Bearing a nonplanar phenoxazine moiety, PXZBM shows the lowest lying absorption onset at ∼390 nm in nonpolar solvents such as cyclohexane but reveals an anomalously large Stokes-shifted (∼14 500 cm-1) emission maximized at 595 nm. In sharp contrast, when a phenylene spacer is added between phenoxazine and dimesitylboryl moieties of PXZBM, the 10-(4-dimesitylborylphenyl)phenoxazine PXZPBM in cyclohexane reveals a much blue-shifted emission at 470 nm despite its red-shifted absorption maximized at 420 nm (cf. PXZBM). The emission of PXZBM further reveals solvent polarity dependence, being red-shifted from 595 nm in cyclohexane to 645 nm in CH2Cl2. For rationalization, the steric hindrance between phenoxazine and the dimesitylboryl unit in PXZBM caused a puckered arrangement of phenoxazine at the ground state. Upon electronic excitation, as supported by the femtosecond early relaxation dynamics, spectral-temporal evolution and energetics calculated along the reaction potential energy surfaces, the diminution of N → B electron transfer reduces π-conjugation and elongates the N-B bond length, inducing the fast phenoxazine planarization with a time constant of 890 ± 100 fs. The associated charge-transfer reaction from phenoxazine (donor) to dimesitylboryl unit (acceptor) results in a further red-shifted emission in polar solvents. In stark contrast, PXZPBM shows a planar phenoxazine and undergoes excited-state charge transfer only. Despite the distinct difference in excited-state relaxation dynamics, both PXZBM and PXZPBM exhibit efficient TADF capable of producing highly efficient orange and green organic light emitting diodes with peak efficiencies of 10.9% (30.3 cd A-1 and 18.7 lm W-1) and 22.6% (67.7 cd A-1 and 50.0 lm W-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA