Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Rev Endocr Metab Disord ; 23(3): 421-429, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34463908

RESUMO

Transcription factor FOXP3 is a crucial regulator in the development and function of regulatory T cells (Treg) that are essential for immunological tolerance and homeostasis. Numerous studies have indicated the correlation of tumor infiltrating FOXP3+ Treg upregulation with poor prognostic parameters in thyroid cancer, including lymph node metastases, extrathyroidal extension, and multifocality. Most immune-checkpoint molecules are expressed in Treg. The blockage of such signals with checkpoint inhibitors has been approved for several solid tumors, but not yet for thyroid cancer. Thyroid abnormalities may be induced by checkpoint inhibitors. For example, hypothyroidism, thyrotoxicosis, painless thyroiditis, or even thyroid storm are more frequently associated with anti-PD-1 antibodies (pembrolizumab and nivolumab). Therefore, Targeting FOXP3+ Treg may have impacts on checkpoint molecules and the growth of thyroid cancer. Several factors may impact the role and stability of FOXP3, such as alternative RNA splicing, mutations, and post-translational modification. In addition, the role of FOXP3+ Treg in the tumor microenvironment is also affected by the complex regulatory network formed by FOXP3 and its transcriptional partners. Here we discussed how the expression and function of FOXP3 were regulated and how FOXP3 interacted with its targets in Treg, aiming to help the development of FOXP3 as a potential therapeutic target for thyroid cancer.


Assuntos
Doenças da Glândula Tireoide , Neoplasias da Glândula Tireoide , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Linfócitos T Reguladores/metabolismo , Doenças da Glândula Tireoide/genética , Doenças da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Microambiente Tumoral
2.
FASEB J ; 35(4): e21516, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710697

RESUMO

Normal thyroid tissue displays a prevalent expression of ERß than ERα, which drastically turns upside down in the initiation and progression of papillary thyroid cancer (PTC). The underlying molecular mechanism of this phenomenon remains unclear. Here, we demonstrated that ERα and ERß were coexpressed in human thyroid tissues and cells. ERα mRNA (A-1) and ERß mRNA (0N-1), transcribed from Promoter A of ERα gene and Promoter 0N of ERß gene, respectively, were the major mRNA isoforms which mainly contributed to total ERα mRNA and total ERß mRNA in human thyroid-derived cell lines and tissues. The expression levels of ERα mRNA (A-1) and total ERα mRNA were gradually increased, and those of ERß mRNA (0N-1) and total ERß mRNA were decreased by degree in the initiation and progression of PTC. No aberrant DNA methylation of ERα 5'-untranslated region was involved in its up-regulation; however, aberrant DNA methylation in Promoter 0N and Exon 0N of ERß gene was found to be involved in its down-regulation in the initiation and progression of PTC. ERß can repress ERα gene transcription via recruitment of NCoR and displacement of RNA polymerase II at the Sp1 site in ERα Promoter A-specific region in thyroid-derived cells. It is suggested that DNA methylation of CpG islands in Promoter 0N and Exon 0N of ERß gene leads to a decreased ERß gene expression, which attenuates its inhibitory effect on ERα gene transcription and results in an increased ERα gene expression, cell proliferation, initiation, and progression of PTC.


Assuntos
Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Linhagem Celular Tumoral , Regulação para Baixo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Humanos , Receptores de Estrogênio/metabolismo , Regulação para Cima
3.
Med Res Rev ; 41(1): 507-524, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026703

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. The outcome of current standard treatments, as well as targeted therapies in advanced stages, are still unsatisfactory. Attention has been drawn to novel strategies for better treatment efficacy. Hepatocyte growth factor/c-mesenchymal-epithelial transition factor (HGF/c-Met) axis has been known as an essential element in the regulation of liver diseases and as an oncogenic factor in HCC. In this review, we collected the evidence of HGF/c-Met as a tumor progression and prognostic marker, discussed the anti-c-Met therapy in vitro, summarized the outcome of c-Met inhibitors in clinical trials, and identified potential impetus for future anti-c-Met treatments. We also analyzed the inconsistency of HGF/c-Met from various publications and offered reasonable explanations based on the current understanding in this area. In conclusion, HGF/c-Met plays a crucial role in the progression and growth of HCC, and the strategies to inhibit this pathway may facilitate the development of new and effective treatments for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células , Transição Epitelial-Mesenquimal , Fator de Crescimento de Hepatócito , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais
4.
J Biol Chem ; 295(16): 5484-5495, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32198183

RESUMO

The transcription factor forkhead box P3 (FOXP3) is a biomarker for regulatory T cells and can also be expressed in cancer cells, but its function in cancer appears to be divergent. The role of hepatocyte-expressed FOXP3 in hepatocellular carcinoma (HCC) is unknown. Here, we collected tumor samples and clinical information from 115 HCC patients and used five human cancer cell lines. We examined FOXP3 mRNA sequences for mutations, used a luciferase assay to assess promoter activities of FOXP3's target genes, and employed mouse tumor models to confirm in vitro results. We detected mutations in the FKH domain of FOXP3 mRNAs in 33% of the HCC tumor tissues, but in none of the adjacent nontumor tissues. None of the mutations occurred at high frequency, indicating that they occurred randomly. Notably, the mutations were not detected in the corresponding regions of FOXP3 genomic DNA, and many of them resulted in amino acid substitutions in the FKH region, altering FOXP3's subcellular localization. FOXP3 delocalization from the nucleus to the cytoplasm caused loss of transcriptional regulation of its target genes, inactivated its tumor-inhibitory capability, and changed cellular responses to histone deacetylase (HDAC) inhibitors. More complex FKH mutations appeared to be associated with worse prognosis in HCC patients. We conclude that mutations in the FKH domain of FOXP3 mRNA frequently occur in HCC and that these mutations are caused by errors in transcription and are not derived from genomic DNA mutations. Our results suggest that transcriptional mutagenesis of FOXP3 plays a role in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/genética , Neoplasias Hepáticas/genética , Mutação , RNA Mensageiro/genética , Transporte Ativo do Núcleo Celular , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Feminino , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/metabolismo , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Células MCF-7 , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Domínios Proteicos , RNA Mensageiro/metabolismo
5.
J Transl Med ; 18(1): 66, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32046740

RESUMO

BACKGROUND: Translationally controlled tumor protein (TCTP) is linked to lung cancer. However, upon lung cancer carcinogens stimulation, there were no reports on the relationship between TCTP and lung cell carcinogenic epithelial-mesenchymal transition (EMT). This study was designed to investigate the molecular mechanism of regulation of TCTP expression and its role in lung carcinogens-induced EMT. METHODS: To study the role of TCTP in lung carcinogens [particulate matter 2.5 (PM2.5) or 4-methylnitrosamino-l-3-pyridyl-butanone (NNK)]-induced EMT, PM2.5/NNK-treated lung epithelial and non-small cell lung cancer (NSCLC) cells were tested. Cell derived xenografts, human lung cancer samples and online survival analysis were used to confirm the results. MassArray assay, Real-time PCR and Reporter assays were performed to elucidate the mechanism of regulation of TCTP expression. All statistical analyses were performed using GraphPad Prism version 6.0 or SPSS version 20.0. RESULTS: Translationally controlled tumor protein and vimentin expression were up-regulated in PM2.5/NNK-treated lung cells and orthotopic implantation tumors. TCTP expression was positively correlated with vimentin in human NSCLC samples. Patients with high expression of TCTP displayed reduced overall and disease-free survival. TCTP overexpression could increase vimentin expression and promote cell metastasis. Furthermore, PM2.5/NNK stimulation brought a synergistic effect on EMT in TCTP-transfected cells. TCTP knockdown blocked PM2.5/NNK carcinogenic effect. Mechanically, PM2.5/NNK-induced TCTP expression was regulated by one microRNA, namely miR-125a-3p, but not by methylation on TCTP gene promoter. The level of TCTP was regulated by its specific microRNA during the process of PM2.5/NNK stimulation, which in turn enhanced vimentin expression and played a permissive role in carcinogenic EMT. CONCLUSIONS: Our results provided new insights into the mechanisms of TCTP regulatory expression in lung carcinogens-induced EMT. TCTP and miR-125a-3p might act as potential prognostic biomarkers and therapeutic targets for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão , Neoplasias Pulmonares/genética , Material Particulado/toxicidade , Proteína Tumoral 1 Controlada por Tradução
6.
Biochim Biophys Acta Rev Cancer ; 1868(2): 564-570, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29054475

RESUMO

It is disappointing that only a few patients with hepatocellular carcinoma (HCC) obtain a significant survival benefit from the sorafenib treatment, which is currently regarded as a first-line chemotherapeutic therapy in patients with advanced HCC. Most patients are highly refractory to this therapy. Therefore, it is necessary to identify resistant factors and explore potential protocols that can be used to overcome the resistance or substitute sorafenib once the resistance is formed. In fact, a growing body of studies has been focusing on the resistance mechanisms or the method to overcome it. The limitation of sorafenib efficacy has been partially but not fully elucidated. Moreover, some protocols have shown encouraging outcomes but still need to be further verified in clinical trials. In this review, we summarize the recent findings on the potential mechanisms that contribute to sorafenib resistance and discuss strategies that can be used to improve the treatment outcome.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Autofagia , Carcinoma Hepatocelular/patologia , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/fisiologia , Humanos , Neoplasias Hepáticas/patologia , MicroRNAs/fisiologia , Células-Tronco Neoplásicas/fisiologia , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Compostos de Fenilureia/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Sorafenibe
7.
Mol Ther ; 26(9): 2295-2303, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30005868

RESUMO

Thyroid cancer is rapidly increasing in incidence worldwide. Although most thyroid cancer can be cured with surgery, radioactive iodine, and/or chemotherapy, thyroid cancers still recur and may become chemoresistant. Autophagy is a complex self-degradative process that plays a dual role in cancer development and progression. In this study, we found that miR-125b was downregulated in tissue samples of thyroid cancer as well as in thyroid cancer cell lines, and the expression of Foxp3 was upregulated. Further, we demonstrated that miR-125b could directly act on Foxp3 by binding to its 3' UTR and inhibit the expression of Foxp3. A negative relationship between miR-125b and Foxp3 was thus revealed. Overexpression of miR-125b markedly sensitized thyroid cancer cells to cisplatin treatment by inducing autophagy through an Atg7 pathway in vitro and in vivo. Taken together, our findings demonstrate a novel mechanism by which miR-125b has the potential to negatively regulate Foxp3 to promote autophagy and enhance the efficacy of cisplatin in thyroid cancer. miR-125 may be of therapeutic significance in thyroid cancer.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Regiões 3' não Traduzidas/efeitos dos fármacos , Regiões 3' não Traduzidas/genética , Autofagia/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Técnicas In Vitro , MicroRNAs/genética , Neoplasias da Glândula Tireoide/genética
8.
BMC Biol ; 16(1): 151, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30593266

RESUMO

BACKGROUND: Cultured human cells are pivotal models to study human gene functions, but introducing complete loss of function in diploid or aneuploid cells has been a challenge. The recently developed CRISPR/Cas9-mediated homology-independent knock-in approach permits targeted insertion of large DNA at high efficiency, providing a tool for insertional disruption of a selected gene. Pioneer studies have showed promising results, but the current methodology is still suboptimal and functional outcomes have not been well examined. Taking advantage of the promoterless fluorescence reporter systems established in our previous study, here, we further investigated potentials of this new insertional gene disruption approach and examined its functional outcomes. RESULTS: Exemplified by using hyperploid LO2 cells, we demonstrated that simultaneous knock-in of dual fluorescence reporters through CRISPR/Cas9-induced homology-independent DNA repair permitted one-step generation of cells carrying complete disruption of target genes at multiple alleles. Through knocking-in at coding exons, we generated stable single-cell clones carrying complete disruption of ULK1 gene at all four alleles, lacking intact FAT10 in all three alleles, or devoid of intact CtIP at both alleles. We have confirmed the depletion of ULK1 and FAT10 transcripts as well as corresponding proteins in the obtained cell clones. Moreover, consistent with previous reports, we observed impaired mitophagy in ULK1-/- cells and attenuated cytokine-induced cell death in FAT10-/- clones. However, our analysis showed that single-cell clones carrying complete disruption of CtIP gene at both alleles preserved in-frame aberrant CtIP transcripts and produced proteins. Strikingly, the CtIP-disrupted clones raised through another two distinct targeting strategies also produced varied but in-frame aberrant CtIP transcripts. Sequencing analysis suggested that diverse DNA processing and alternative RNA splicing were involved in generating these in-frame aberrant CtIP transcripts, and some infrequent events were biasedly enriched among the CtIP-disrupted cell clones. CONCLUSION: Multiallelic gene disruption could be readily introduced through CRISPR/Cas9-induced homology-independent knock-in of dual fluorescence reporters followed by direct tracing and cell isolation. Robust cellular mechanisms exist to spare essential genes from loss-of-function modifications, by generating partially functional transcripts through diverse DNA and RNA processing mechanisms.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Reparo do DNA , Técnicas de Introdução de Genes/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Ubiquitinas/genética , Linhagem Celular , Endodesoxirribonucleases , Mutagênese Insercional
9.
Mol Cancer ; 16(1): 124, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28716029

RESUMO

BACKGROUND: The role of cancer cell FOXP3 in tumorigenesis is conflicting. We aimed to study FOXP3 expression and regulation, function and clinical implication in human non-small cell lung cancer (NSCLC). METHODS: One hundred and six patients with histologically-confirmed NSCLC who underwent surgery were recruited for the study. Tumor samples and NSCLC cell lines were used to examine FOXP3 and its related molecules. Various cell functions related to tumorigenesis were performed. In vivo mouse tumor xenograft was used to confirm the in vitro results. RESULTS: NSCLC patients with the high level of FOXP3 had a significant decrease in overall survival and recurrence-free survival. FOXP3 overexpression significantly induced cell proliferation, migration, and invasion, whereas its inhibition impaired its oncogenic function. In vivo studies confirmed that FOXP3 promoted tumor growth and metastasis. The ectopic expression of FOXP3 induced epithelial-mesenchymal transition (EMT) with downregulation of E-cadherin and upregulation of N-cadherin, vimentin, snail, slug, and MMP9. The oncogenic effects by FOXP3 could be attributed to FOX3-mediated activation of Wnt/ß-catenin signaling, as FOXP3 increased luciferase activity of Topflash reporter and upregulated Wnt signaling target genes including c-Myc and Cyclin D1 in NSCLC cells. Co-immunoprecipitation results further indicated that FOXP3 could physically interacted with ß-catenin and TCF4 to enhance the functions of ß-catenin and TCF4, inducing transcription of Wnt target genes to promote cell proliferation, invasion and EMT induction. CONCLUSIONS: FOXP3 can act as a co-activator to facilitate the Wnt-b-catenin signaling pathway, inducing EMT and tumor growth and metastasis in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal , Fatores de Transcrição Forkhead/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Via de Sinalização Wnt , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Humanos , Camundongos Nus , Metástase Neoplásica , Prognóstico
10.
J Cell Biochem ; 117(11): 2473-81, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26970173

RESUMO

Oxidative stress-induced DNA damage is a known causing factor for many types of tumors, but information on the role of oxidants and antioxidants in thyroid tumors is limited. The aim of this study was to determine antioxidant levels in thyroid tumors. In this study, tumor and its matched non-tumor thyroid tissue samples were obtained from 53 patients with thyroid tumors. The levels of manganese superoxide dismutase (MnSOD), thioredoxin reductase 2 (TXNRD2), glutathione (GSH), glutathione peroxidase (Gpx), catalase (CAT), and 27 kd heat-shock protein (hsp27) were determined in both thyroid tissue samples and cultured thyroid cells by immunohistochemical staining and western blot. Hydrogen peroxide (H2 O2 ) was used to generate oxidant stress in the cell culture experiments. We found that the levels of MnSOD, TXNRD2, GSH, Gpx, and Hsp27 were increased in both malignant and benign tumors, while the level of CAT was decreased. To verify the results of the tissue study, we treated cultured thyroid cells with H2 O2 and found the same pattern of antioxidant changes. Hsp27 was also increased after H2 O2 treatment. The expression of hsp27 was upregulated by 8.24-, 6.96-, and 3.09-fold in thyroid cancer, follicular adenoma, multinodular goiter, respectively. Collectively, our study demonstrated that the levels of hsp27 together with MnSOD, TXNRD2, GSH, and Gpx were significantly upregulated by H2 O2 in thyroid tumors. The increase of these antioxidants is observed in both malignant and benign tumors, particularly in the former. The upregulation of antioxidants is likely a protective mechanism of tumor cells to maintain their survival and growth. J. Cell. Biochem. 117: 2473-2481, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Adenocarcinoma Folicular/metabolismo , Antioxidantes/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Papilar/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Adenocarcinoma Folicular/patologia , Carcinoma Papilar/patologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico , Humanos , Técnicas Imunoenzimáticas , Chaperonas Moleculares , Estresse Oxidativo , Neoplasias da Glândula Tireoide/patologia
11.
Clin Endocrinol (Oxf) ; 84(5): 748-55, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26285159

RESUMO

CONTEXT AND OBJECTIVE: BRAFV600E mutation is the most common activating mutation associated with aggressive behaviours in human tumours including conventional papillary thyroid carcinoma (cPTC). P-cadherin and cadherin 6 have been shown to be mesenchymal-associated cadherins and promote cancer cell invasion and metastasis. The purpose of this study was to examine BRAFV600E, P-cadherin and cadherin 6 expressions in cPTC and to assess the association of their expression with clinicopathological indicators. METHODS: BRAFV600E, P-cadherin and cadherin 6 protein expressions in 80 cPTCs, 61 nodular hyperplasia and 76 normal thyroid tissues were examined by immunohistochemistry. The correlation of their protein expression with clinicopathological indicators of cPTC was statistically analysed. RESULTS: Protein expression of BRAFV600E, P-cadherin and cadherin 6 was upregulated in cPTC. High protein expression of BRAFV600E, P-cadherin and cadherin 6 was significantly correlated with high TNM stage and lymph node metastasis (LNM) (P < 0·001). Furthermore, BRAFV600E, P-cadherin and cadherin 6 protein expressions were correlated with one another. BRAFV600E high expression combined with both P-cadherin and cadherin-6 high expressions had stronger correlation with high TNM stage and LNM when compared with BRAFV600E high expression combined with either P-cadherin or cadherin-6 high expression (P = 0·042, 0·017 for TNM stage and P = 0·003, 0·006 for LNM, respectively) and only BRAFV600E high expression (P < 0·001 for both TNM stage and LNM). CONCLUSIONS: Concomitant high expression of BRAFV600E, P-cadherin and cadherin 6 is strongly associated with high TNM stage and LNM in cPTC.


Assuntos
Caderinas/biossíntese , Carcinoma Papilar/metabolismo , Proteínas Mutantes/biossíntese , Proteínas Proto-Oncogênicas B-raf/biossíntese , Neoplasias da Glândula Tireoide/metabolismo , Adulto , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Distribuição de Qui-Quadrado , Feminino , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Estadiamento de Neoplasias , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Análise Serial de Tecidos
12.
BMC Cancer ; 16(1): 926, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27899088

RESUMO

BACKGROUND: The role of estrogen receptor alpha (ERa), estrogen receptor beta (ERb) and ERa36 signaling in hepatocellular carcinoma (HCC) is not fully addressed. METHODS: In this study, three cohorts were included: (i) primary HCC patients (N = 76, cohort P), (ii) colorectal liver metastasis (mCRC) (N = 32, cohort S), and (iii) HCC from The Cancer Genome Atlas (TCGA) (N = 121). The levels of ERa36 and wtER36 were measured and their correlation with clinicopathologic features was determined. RESULTS: WtERa was downregulated and that ERa36 was upregulated in tumor tissues in both cohort P and TCGA data set. ERa36 was downregulated in tumor tissues in cohort S. In cohort P, wtERa was differentially expressed in gender (P < 0.000), age (P = 0.004), tumor number (P = 0.043), tumor size (P = 0.002), intrahepatic recurrence (P = 0.054). ERa36 was unequally expressed in different non-tumor liver status (P = 0.040). WtERa was negatively associated with overall survival (OS) and disease free survival (DFS) in cohort P. Compared with non-tumor tissues, the expression of ERa36 was increased in primary HCC but decreased in secondary HCC, showing opposite expression patterns of ERa36 between primary HCC and secondary HCC. CONCLUSIONS: Primary HCC is associated with the decreased WtERa but increased ERa36. The expression pattern of ERa36 is different between primary HCC and secondary HCC, as the former with the increased ERa36 but the latter with the decreased ERa36. Therefore, the expression of ERa36 may be used to differentiate the primary HCC and the secondary one.


Assuntos
Processamento Alternativo , Carcinoma Hepatocelular/genética , Neoplasias Colorretais/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/genética , Biomarcadores Tumorais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Estudos de Coortes , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Terapia Combinada , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/terapia , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida
13.
Cancer ; 121 Suppl 17: 3130-45, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26331820

RESUMO

BACKGROUND: Previous studies have shown that the levels of 15-lipoxygenase 1 (15-LOX-1) and 15-LOX-2 as well as their metabolites 13-S-hydroxyoctadecadienoic acid (13(S)-HODE) and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) are significantly reduced in smokers with non-small cell lung carcinoma (NSCLC). Furthermore, animal model experiments have indicated that the reduction of these molecules occurs before the establishment of cigarette smoking carcinogen-induced lung tumors, and this suggests roles in lung tumorigenesis. However, the functions of these molecules remain unknown in NSCLC. METHODS: NSCLC cells were treated with exogenous 13(S)-HODE and 15(S)-HETE, and then the ways in which they affected cell function were examined. 15-LOX-1 and 15-LOX-2 were also overexpressed in tumor cells to restore these 2 enzymes to generate endogenous 13(S)-HODE and 15(S)-HETE before cell function was assessed. RESULTS: The application of exogenous 13(S)-HODE and 15(S)-HETE significantly enhanced the activity of peroxisome proliferator-activated receptor γ (PPARγ), inhibited cell proliferation, induced apoptosis, and activated caspases 9 and 3. The overexpression of 15-LOX-1 and 15-LOX-2 obviously promoted the endogenous levels of 13(S)-HODE and 15(S)-HETE, which were demonstrated to be more effective in the inhibition of NSCLC. CONCLUSIONS: This study has demonstrated that exogenous or endogenous 13(S)-HODE and 15(S)-HETE can functionally inhibit NSCLC, likely by activating PPARγ. The restoration of 15-LOX activity to increase the production of endogenous 15(S)-HETE and 13(S)-HODE may offer a novel research direction for molecular targeting treatment of smoking-related NSCLC. This strategy can potentially avoid side effects associated with the application of synthetic PPARγ ligands.


Assuntos
Araquidonato 15-Lipoxigenase/biossíntese , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Hidroxieicosatetraenoicos/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Araquidonato 15-Lipoxigenase/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , PPAR gama/genética
14.
J Transl Med ; 13: 23, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25623232

RESUMO

BACKGROUND: Histone deacetylase 3 (HDAC3) is overexpressed in cancers and its inhibition enhances anti-tumor chemotherapy. ZBP-89, a transcription factor, can induce pro-apoptotic Bak and reduce HDAC3 but the mechanism is unknown. Pin1, a molecular switch that determines the fate of phosphoproteins, is known to interact with HDAC3. The aim of this study was to investigate the mechanism how ZBP-89 downregulated HDAC3. METHODS: In this study, liver cells, Pin1-knockout Pin1(-/-) and Pin1 wild-typed Pin(+/+) cells were used to explore how ZBP-89 reduced HDAC3. The overexpression of ZBP-89 was achieved by infecting cells with Ad-ZBP-89, an adenoviral construct containing ZBP-89 gene. The role of NF-κB was determined using CAY10576, MG132 and SN50, the former two being inhibitors of IκB degradation and SN50 being an inhibitor of p65/p50 translocation. A xenograft tumor model was used to confirm the in vitro data. RESULTS: ZBP-89 reduced HDAC3, and it could form a complex with IκB and induce IκB phosphorylation to inhibit IκB. Furthermore, ZBP-89-mediated HDAC3 reduction was suppressed by IκB degradation inhibitors CAY10576 and MG132 but not by p65/p50 translocation inhibitor SN50, indicating that IκB decrease rather than the elevated activity of NF-κB contributed to HDAC3 reduction. ZBP-89-mediated HDAC3 or IκB reduction was significantly less obvious in Pin1(-/-) cells compared with Pin1(+/+) cells. In Ad-ZBP-89-infected Pin1(+/+) cancer cells, Pin1 siRNA increased HDAC3 but decreased Bak, compared with cells without ZBP-89 infection. These findings indicate that Pin1 participates in ZBP-89-mediated HDAC3 downregulation and Bak upregulation. The cell culture result was confirmed by in vivo mouse tumor model experiments. CONCLUSIONS: ZBP-89 attenuates HDAC3 by increasing IκB degradation. Such attenuation is independent of NF-κB activity but partially depends on Pin1. The novel pathway identified may help generate new anti-cancer strategy by targeting HDAC3 and its related molecules.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases/metabolismo , Proteínas I-kappa B/metabolismo , Neoplasias/metabolismo , Peptidilprolil Isomerase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Células Hep G2 , Humanos , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Peptidilprolil Isomerase de Interação com NIMA , Transplante de Neoplasias , Fosfoproteínas/metabolismo , Fosforilação , RNA Interferente Pequeno/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
15.
Exp Cell Res ; 324(2): 183-91, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24726886

RESUMO

SNPs in human AFP promoter are associated with serum AFP levels in hepatocellular carcinoma (HCC), suggesting that AFP promoter variants may generate better transcriptional activities while retaining high specificity to AFP-producing cells. We sequenced human AFP promoters, cloned 15 different genotype promoters and tested their reporter activities in AFP-producing and non-producing cells. Among various AFP variant fragments tested, EA4D exhibited the highest reporter activity and thus was selected for the further study. EA4D was fused with tBid and coupled with nano-particle vector (H1) to form pGL3-EA4D-tBid/H1. pGL3-EA4D-tBid/H1 could express a high level of tBid while retain the specificity to AFP-producing cells. In a HCC tumor model, application of pGL3-EA4D-tBid/H1 significantly inhibited the growth of AFP-producing-implanted tumors with minimal side-effects, but had no effect on non-AFP-producing tumors. Furthermore, pGL3-EA4D-tBid/H1 could significantly sensitize HCC cells to sorafenib, an approved anti-HCC agent. Collectively, pGL3-EA4D-tBid/H1, a construct with the AFP promoter EA4D and the novel H1 delivery system, can specifically target and effectively suppress the AFP-producing HCC. This new therapeutic tool shows little toxicity in vitro and in vivo and it should thus be safe for further clinical tests.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Carcinoma Hepatocelular/terapia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Neoplasias Hepáticas/terapia , Nanopartículas , Regiões Promotoras Genéticas/genética , alfa-Fetoproteínas/genética , Carcinoma Hepatocelular/genética , Celulose/química , Ciclodextrinas/química , Ácido Fólico/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Nanopartículas/química , Polietilenoimina/química , Resultado do Tratamento , Células Tumorais Cultivadas
16.
Biochim Biophys Acta ; 1833(12): 2970-2979, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23954442

RESUMO

Zinc-binding protein-89 regulates Bak to facilitate apoptosis in cancer cells. This study examined if zinc-binding protein-89 regulates Bak through an epigenetic mechanism in hepatocellular carcinoma. We first demonstrated that the expression of Bak was reduced but the levels of deoxyribonucleic acid methyltransferase 1 and histone deacetylase 3 were increased in hepatocellular carcinoma cancer tissues compared to the corresponding non-cancer tissues. Moreover, there was a negative correlation between Bak expression and deoxyribonucleic acid methyltransferase 1 levels in hepatocellular carcinoma. Administration of zinc-binding protein-89 downregulated histone deacetylase 3 expression and suppressed the activities of histone deacetylase and deoxyribonucleic acid methyltransferase, which led to maintenance of histone acetylation status, inhibited the binding of methyl-CpG-binding protein 2 to genomic deoxyribonucleic acid and demethylated CpG islands in the Bak promoter in hepatocellular carcinoma cells. Using the xenograft mouse tumor model, we demonstrated that zinc-binding protein-89 or inhibitors of either epigenetic enzymes could stimulate Bak expression, induce apoptosis, and arrest tumor growth and that the maximal effort was achieved when zinc-binding protein-89 and the enzyme inhibitors were used in combination. Conclusively, zinc-binding protein-89 upregulates the expression of Bak by targeting multiple components of the epigenetic pathway in hepatocellular carcinoma.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
17.
Cancer ; 120(1): 142-53, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24114184

RESUMO

BACKGROUND: Estrogen receptor (ER) and peroxisome proliferator-activated receptor gamma (PPARγ) are associated with thyroid tumorigenesis and treatment. However, the interaction between them has not been studied. METHODS: The impact of ER over-expression or down-expression by DNA/small interfering RNA (siRNA) transfection, ERα agonists, and the ERß agonist diarylpropiolnitrile (DPN) on PPARγ expression/activity was examined in papillary thyroid carcinoma (PTC) and anaplastic thyroid carcinoma (ATC) cells. The effects of PPARγ modulation by rosiglitazone (RTZ), a PPARγ ligand, and of PPARγ siRNA on ER expression were determined. Cellular functions reflected by cell proliferation and migration were assayed. Apoptosis was analyzed by terminal deoxynucleotidyl transferase dUTP nick-end labeling, and apoptotic-related proteins were evaluated by Western blot analysis. RESULTS: PPARγ protein and activity were reduced by the over-expression of either ERα or ERß, whereas repression of ERα or ERß increased PPARγ expression. The administration of RTZ counteracted the effects of ER and also reduced their expression, particularly in PTC cells. Moreover, knockdown of PPARγ increased ER expression and activity. Functionally, ERα activation offset the inhibitory effect of PPARγ on cellular functions, but ERß activation aggregated it and induced apoptosis, particularly in PTC cells. Finally, the interaction between ERß and PPARγ enhanced the expression of proapoptotic molecules, such as caspase-3 and apoptosis-inducing factor. CONCLUSIONS: This study provides evidence supporting a cross-talk between ER and PPARγ. The reciprocal interaction between PPARγ and ERß significantly inhibits the proliferation and migration of thyroid cancer cells, providing a new therapeutic strategy against thyroid cancer.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , PPAR gama/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Receptor alfa de Estrogênio/biossíntese , Receptor alfa de Estrogênio/deficiência , Receptor beta de Estrogênio/biossíntese , Receptor beta de Estrogênio/deficiência , Técnicas de Silenciamento de Genes , Humanos , PPAR gama/biossíntese , Receptor Cross-Talk , Rosiglitazona , Transdução de Sinais , Tiazolidinedionas/farmacologia , Neoplasias da Glândula Tireoide/patologia , Transfecção
18.
J Endocrinol ; 261(1)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329368

RESUMO

The solute carrier (SLC) family is a large group of membrane transport proteins. Their dysfunction plays an important role in the pathogenesis of thyroid cancer. The most well-known SLC is the sodium-iodide symporter (NIS), also known as sodium/iodide co-transporter or solute carrier family 5 member 5 (SLC5A5) in thyroid cancer. The dysregulation of NIS in thyroid cancer is well documented. The role of NIS in the uptake of iodide is critical in the treatment of thyroid cancer, radioactive iodide (RAI) therapy in particular. In addition to NIS, other SLC members may affect the autophagy, proliferation, and apoptosis of thyroid cancer cells, indicating that an alteration in SLC members may affect different cellular events in the evolution of thyroid cancer. The expression of the SLC members may impact the uptake of chemicals by the thyroid, suggesting that targeting SLC members may be a promising therapeutic strategy in thyroid cancer.


Assuntos
Simportadores , Neoplasias da Glândula Tireoide , Humanos , Iodetos/metabolismo , Neoplasias da Glândula Tireoide/genética , Simportadores/genética , Simportadores/metabolismo
19.
Clin Dev Immunol ; 2013: 589423, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24288553

RESUMO

This study aimed to examine HIF-2α, TWIST, and CXCR4 expression in papillary thyroid carcinoma (PTC) and assesses the association of their expression with clinicopathological indicators. HIF-2α, TWIST, and CXCR4 protein expression in 129 PTCs, 61 nodular hyperplasia, and 118 normal thyroid tissue specimens was analyzed using immunohistochemistry. The protein expression levels of these three molecules were upregulated in PTCs. High protein expression of HIF-2α, TWIST, and CXCR4 was significantly correlated with lymph node metastasis (LNM) (P < 0.001). Furthermore, HIF-2α, TWIST, and CXCR4 protein expression was correlated with one another. Concomitant high expression of these molecules had stronger correlation with LNM than did each alone (P = 0.032 for HIF-2α/TWIST, P < 0.001 for HIF-2α/CXCR4, P = 0.018 for TWIST/CXCR4, and P < 0.001 for HIF-2α/TWIST/CXCR4). Additionally, HIF-2α, TWIST, and CXCR4 mRNA expression were assessed in 30 PTCs, 10 nodular hyperplasia, and 10 normal thyroid tissue specimens using real-time RT-PCR. TWIST and CXCR4 mRNA expression levels were up-regulated in PTCs, and high mRNA expression of TWIST and CXCR4 was significantly correlated with LNM (P = 0.005 and P = 0.010, resp.). These results demonstrated that the evaluation of HIF-2α, TWIST, and CXCR4 expression in PTC may be useful in predicting the risk of LNM.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma/genética , Carcinoma/patologia , Expressão Gênica , Receptores CXCR4/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Proteína 1 Relacionada a Twist/genética , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma/diagnóstico , Carcinoma/metabolismo , Carcinoma Papilar , Feminino , Humanos , Imuno-Histoquímica , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR4/metabolismo , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/metabolismo , Proteína 1 Relacionada a Twist/metabolismo
20.
Pharmacol Ther ; 241: 108333, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528259

RESUMO

Although in the last few decades we have witnessed the rapid development of treatments for non-small cell lung cancer (NSCLC), it still remains the leading cause of cancer-related death. Increasing efforts have been devoted to exploring potential biomarkers and molecular targets for NSCLC. Foxp3, a transcription factor that was discovered as a master regulator of regulatory T cells (Tregs), has been found to express abnormally in tumoral cells including lung cancer cells. In recent years, increasing evidence have surfaced, revealing the carcinogenic effect of FOXP3 in lung cancer. In this review, we analyzed and summarized the function of FOXP3, its regulation and therapeutic potentials in NSCLC, with a hope to facilitate the development of novel treatments for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição Forkhead , Pulmão/metabolismo , Linfócitos T Reguladores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA