Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(2): 102178, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38617974

RESUMO

Collagen VI-related dystrophies (COL6-RDs) are a group of severe, congenital-onset muscular dystrophies for which there is no effective causative treatment. Dominant-negative mutations are common in COL6A1, COL6A2, and COL6A3 genes, encoding the collagen α1, α2, and α3 (VI) chains. They act by incorporating into the hierarchical assembly of the three α (VI) chains and consequently produce a dysfunctional collagen VI extracellular matrix, while haploinsufficiency for any of the COL6 genes is not associated with disease. Hence, allele-specific transcript inactivation is a valid therapeutic strategy, although selectively targeting a pathogenic single nucleotide variant is challenging. Here, we develop a small interfering RNA (siRNA) that robustly, and in an allele-specific manner, silences a common glycine substitution (G293R) caused by a single nucleotide change in COL6A1 gene. By intentionally introducing an additional mismatch into the siRNA design, we achieved enhanced specificity toward the mutant allele. Treatment of patient-derived fibroblasts effectively reduced the levels of mutant transcripts while maintaining unaltered wild-type transcript levels, rescuing the secretion and assembly of collagen VI matrix by reducing the dominant-negative effect of mutant chains. Our findings establish a promising treatment approach for patients with the recurrent dominantly negative acting G293R glycine substitution.

2.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38585815

RESUMO

The application of allele-specific gene editing tools can expand the therapeutic options for dominant genetic conditions, either via gene correction or via allelic gene inactivation in situations where haploinsufficiency is tolerated. Here, we used allele-targeted CRISPR/Cas9 guide RNAs (gRNAs) to introduce inactivating frameshifting indels at a single nucleotide variant in the COL6A1 gene (c.868G>A; G290R), a variant that acts as dominant negative and that is associated with a severe form of congenital muscular dystrophy. We expressed spCas9 along with allele-targeted gRNAs, without providing a repair template, in primary fibroblasts derived from four patients and one control subject. Amplicon deep-sequencing for two gRNAs tested showed that single nucleotide deletions accounted for the majority of indels introduced. While activity of the two gRNAs was greater at the G290R allele, both gRNAs were also active at the wild-type allele. To enhance allele-selectivity, we introduced deliberate additional mismatches to one gRNA. One of these optimized gRNAs showed minimal activity at the WT allele, while generating productive edits and improving collagen VI matrix in cultured patient fibroblasts. This study strengthens the potential of gene editing to treat dominant-negative disorders, but also underscores the challenges in achieving allele selectivity with gRNAs.

3.
Mol Ther Nucleic Acids ; 35(3): 102269, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39171142

RESUMO

The application of allele-specific gene editing tools can expand the therapeutic options for dominant genetic conditions, either via gene correction or via allelic gene inactivation in situations where haploinsufficiency is tolerated. Here, we used allele-targeted CRISPR-Cas9 guide RNAs (gRNAs) to introduce inactivating frameshifting indels at an SNV in the COL6A1 gene (c.868G>A; G290R), a variant that acts as dominant negative and that is associated with a severe form of congenital muscular dystrophy. We expressed SpCas9 along with allele-targeted gRNAs, without providing a repair template, in primary fibroblasts derived from four patients and one control subject. Amplicon deep sequencing for two gRNAs tested showed that single-nucleotide deletions accounted for the majority of indels introduced. While activity of the two gRNAs was greater at the G290R allele, both gRNAs were also active at the wild-type allele. To enhance allele selectivity, we introduced deliberate additional mismatches to one gRNA. One of these optimized gRNAs showed minimal activity at the WT allele, while generating productive edits and improving collagen VI matrix in cultured patient fibroblasts. This study strengthens the potential of gene editing to treat dominant-negative disorders, but also underscores the challenges in achieving allele selectivity with gRNAs.

4.
Cell Stem Cell ; 29(4): 610-619.e5, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395188

RESUMO

Human pluripotent stem cell (hPSC)-derived myogenic progenitor cell (MPC) transplantation is a promising therapeutic approach for a variety of degenerative muscle disorders. Here, using an MPC-specific fluorescent reporter system (PAX7::GFP), we demonstrate that hPSC-derived MPCs can contribute to the regeneration of myofibers in mice following local injury and in mice deficient of dystrophin (mdx). We also demonstrate that a subset of PAX7::GFP MPCs engraft within the basal lamina of regenerated myofibers, adopt a quiescent state, and contribute to regeneration upon reinjury and in mdx mouse models. This subset of PAX7::GFP MPCs undergo a maturation process and remodel their molecular characteristics to resemble those of late-stage fetal MPCs/adult satellite cells following in vivo engraftment. These in-vivo-matured PAX7::GFP MPCs retain a cell-autonomous ability to regenerate and can repopulate in the niche of secondary recipient mice, providing a proof of principle for future hPSC-based cell therapy for muscle disorders.


Assuntos
Células-Tronco Pluripotentes , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Distrofina , Humanos , Camundongos , Camundongos Endogâmicos mdx , Desenvolvimento Muscular , Músculo Esquelético , Mioblastos , Transplante de Células-Tronco
5.
JCI Insight ; 4(6)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30895940

RESUMO

The clinical application of advanced next-generation sequencing technologies is increasingly uncovering novel classes of mutations that may serve as potential targets for precision medicine therapeutics. Here, we show that a deep intronic splice defect in the COL6A1 gene, originally discovered by applying muscle RNA sequencing in patients with clinical findings of collagen VI-related dystrophy (COL6-RD), inserts an in-frame pseudoexon into COL6A1 mRNA, encodes a mutant collagen α1(VI) protein that exerts a dominant-negative effect on collagen VI matrix assembly, and provides a unique opportunity for splice-correction approaches aimed at restoring normal gene expression. Using splice-modulating antisense oligomers, we efficiently skipped the pseudoexon in patient-derived fibroblast cultures and restored a wild-type matrix. Similarly, we used CRISPR/Cas9 to precisely delete an intronic sequence containing the pseudoexon and efficiently abolish its inclusion while preserving wild-type splicing. Considering that this splice defect is emerging as one of the single most frequent mutations in COL6-RD, the design of specific and effective splice-correction therapies offers a promising path for clinical translation.


Assuntos
Colágeno Tipo VI/genética , Predisposição Genética para Doença/genética , Distrofias Musculares/genética , Distrofias Musculares/terapia , Splicing de RNA , Sequência de Bases , Sistemas CRISPR-Cas , Análise Mutacional de DNA , Éxons/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Terapia Genética/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Íntrons/genética , Mutação , Sítios de Splice de RNA , RNA Mensageiro/metabolismo , Pele/patologia
6.
Org Lett ; 14(14): 3688-91, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22758780

RESUMO

An efficient microwave-assisted, palladium-catalyzed hydroxylation of aryl chlorides in the presence of a weak base carbonate was developed, which rapidly converts aryl and heteroaryl chlorides to phenols, and can be used when the aryl chloride is functionalized with a ketone, aldehyde, ester, nitrile, or amide.


Assuntos
Carbonatos/química , Hidrocarbonetos Clorados/química , Paládio/química , Catálise , Ésteres , Hidroxilação , Micro-Ondas , Estrutura Molecular , Nitrilas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA