RESUMO
The emergence of multidrug resistance in Neisseria gonorrhoeae is concerning, especially the cooccurrence of azithromycin resistance and decreased susceptibility to extended-spectrum cephalosporin. This study aimed to confirm the antibiotic resistance trends and provide a solution for N. gonorrhoeae treatment in Guangdong, China. A total of 5,808 strains were collected for assessment of antibiotic MICs. High resistance to penicillin (53.80 to 82%), tetracycline (88.30 to 100%), ciprofloxacin (96 to 99.8%), cefixime (6.81 to 46%), and azithromycin (8.60 to 20.03%) was observed. Remarkably, spectinomycin and ceftriaxone seemed to be the effective choices, with resistance rates of 0 to 7.63% and 2.00 to 16.18%, respectively. Moreover, the rates of azithromycin resistance combined with decreased susceptibility to ceftriaxone and cefixime reached 9.28% and 8.64%, respectively. Furthermore, genotyping identified NG-STAR-ST501, NG-MAST-ST2268, and MLST-ST7363 as the sequence types among representative multidrug-resistant isolates. Evolutionary analysis showed that FC428-related clones have spread to Guangdong, China, which might be a cause of the rapid increase in extended-spectrum cephalosporin resistance currently. Among these strains, the prevalence of N. gonorrhoeae was extremely high, and single-dose ceftriaxone treatment might be a challenge in the future. To partially relieve the treatment pressure, a susceptibility test for susceptibility to azithromycin plus extended-spectrum cephalosporin dual therapy was performed. The results showed that all the representative isolates could be effectively killed with the coadministration of less than 1 mg/liter azithromycin and 0.125 mg/liter extended-spectrum cephalosporin, with a synergistic effect according to a fractional inhibitory concentration (FIC) of <0.5. In conclusion, dual therapy might be a powerful measure to treat refractory N. gonorrhoeae in the context of increasing antibiotic resistance in Guangdong, China.
Assuntos
Gonorreia , Neisseria gonorrhoeae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Cefixima/farmacologia , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Resistência às Cefalosporinas , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , China/epidemiologia , Farmacorresistência Bacteriana , Gonorreia/tratamento farmacológico , Gonorreia/epidemiologia , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências MultilocusRESUMO
A microdilution method for the antibiotic susceptibility testing of Neisseria gonorrhoeae was established and improved, and the antibiotic resistance of N. gonorrhoeae samples isolated from 8 cities of Guangdong in 2016 was determined. The improved microdilution method was compared with the agar dilution method recommend by the World Health Organization (WHO) Western Pacific Region by testing the susceptibility of 100 clinical N. gonorrhoeae isolates. The essential agreement (EA), categorical agreement (CA), very major error (VME), major error (ME), and minor error (MIE) levels of the two methods were analyzed; the acceptable performance rates were measured as follows: ≥90% for EA or CA, ≤3% for VME or ME, and ≤7% for MIE. The EA, CA, VME, ME, and MIE of each method for 7 antibiotics, penicillin, tetracycline, ciprofloxacin, spectinomycin, ceftriaxone, cefixime, and azithromycin, were 96%-100%, 94%-100%, 0%-3%, 0%-2%, and 0%-6%, respectively. The Wilcoxon signed-rank test results indicated 94%-100% agreement between the 2 methods after excluding off-scale values (Pâ¯>â¯0.05). The susceptibility of 634â¯N. gonorrhoeae strains to the 7 antibiotics above were tested through the microdilution method. The resistant rates of the isolates against ciprofloxacin, tetracycline, penicillin, and azithromycin were 99.8%, 88.3%, 53.8%, and 11%, and the percentages of the isolates with decreased susceptibility to ceftriaxone (minimum inhibitory concentration [MIC] ≥0.125⯵g/mL) and cefixime (MIC ≥0.25⯵g/mL) were 2.1% and 12%, respectively, in Guangdong. Among 8 cities, Shenzhen had the highest rates of resistance against penicillin (77.8%) and decreased susceptibility against ceftriaxone (5.6%). Zhuhai had the highest rates of decreased susceptibility against cefixime (30.1%), and Jiangmen had the highest azithromycin-resistant isolates (16.8%). The findings from this study indicated that the improved microdilution method is an alternative for testing the antimicrobial susceptibility of N. gonorrhoeae. The resistance rates of N. gonorrhoeae against penicillin, tetracycline, and ciprofloxacin were high. While ceftriaxone, cefixime, and spectinomycin remained effective against N. gonorrhoeae, their effectiveness seemed to be decreasing over time. Azithromycin therapy requires timely susceptibility test results.