Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
New Phytol ; 241(5): 2059-2074, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197218

RESUMO

Thermo-sensitive genic male sterile (TGMS) lines are the core of two-line hybrid rice (Oryza sativa). However, elevated or unstable critical sterility-inducing temperatures (CSITs) of TGMS lines are bottlenecks that restrict the development of two-line hybrid rice. However, the genes and molecular mechanisms controlling CSIT remain unknown. Here, we report the CRITICAL STERILITY-INDUCING TEMPERATURE 2 (CSIT2) that encodes a really interesting new gene (RING) type E3 ligase, controlling the CSIT of thermo-sensitive male sterility 5 (tms5)-based TGMS lines through ribosome-associated protein quality control (RQC). CSIT2 binds to the large and small ribosomal subunits and ubiquitinates 80S ribosomes for dissociation, and may also ubiquitinate misfolded proteins for degradation. Mutation of CSIT2 inhibits the possible damage to ubiquitin system and protein translation, which allows more proteins such as catalases to accumulate for anther development and inhibits abnormal accumulation of reactive oxygen species (ROS) and premature programmed cell death (PCD) in anthers, partly rescuing male sterility and raised the CSIT of tms5-based TGMS lines. These findings reveal a mechanism controlling CSIT and provide a strategy for solving the elevated or unstable CSITs of tms5-based TGMS lines in two-line hybrid rice.


Assuntos
Infertilidade Masculina , Oryza , Masculino , Humanos , Temperatura , Oryza/genética , Ubiquitina , Ubiquitina-Proteína Ligases/genética , Infertilidade das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA