Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 20(Suppl 12): 1007, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888480

RESUMO

BACKGROUND: Europeans and American Indians were major genetic ancestry of Hispanics in the U.S. These ancestral groups have markedly different incidence rates and outcomes in many types of cancers. Therefore, the genetic admixture may cause biased genetic association study with cancer susceptibility variants specifically in Hispanics. For example, the incidence rate of liver cancer has been shown with substantial disparity between Hispanic, Asian and non-Hispanic white populations. Currently, ancestry informative marker (AIM) panels have been widely utilized with up to a few hundred ancestry-informative single nucleotide polymorphisms (SNPs) to infer ancestry admixture. Notably, current available AIMs are predominantly located in intron and intergenic regions, while the whole exome sequencing (WES) protocols commonly used in translational research and clinical practice do not cover these markers. Thus, it remains challenging to accurately determine a patient's admixture proportion without additional DNA testing. RESULTS: In this study we designed an unique AIM panel that infers 3-way genetic admixture from three distinct and selective continental populations (African (AFR), European (EUR), and East Asian (EAS)) within evolutionarily conserved exonic regions. Initially, about 1 million exonic SNPs from selective three populations in the 1000 Genomes Project were trimmed by their linkage disequilibrium (LD), restricted to biallelic variants, and finally we optimized to an AIM panel with 250 SNP markers, or the UT-AIM250 panel, using their ancestral informativeness statistics. Comparing to published AIM panels, UT-AIM250 performed better accuracy when we tested with three ancestral populations (accuracy: 0.995 ± 0.012 for AFR, 0.997 ± 0.007 for EUR, and 0.994 ± 0.012 for EAS). We further demonstrated the performance of the UT-AIM250 panel to admixed American (AMR) samples of the 1000 Genomes Project and obtained similar results (AFR, 0.085 ± 0.098; EUR, 0.665 ± 0.182; and EAS, 0.250 ± 0.205) to previously published AIM panels (Phillips-AIM34: AFR, 0.096 ± 0.127, EUR, 0.575 ± 0.290, and EAS, 0.330 ± 0.315; Wei-AIM278: AFR, 0.070 ± 0.096, EUR, 0.537 ± 0.267, and EAS, 0.393 ± 0.300). Subsequently, we applied the UT-AIM250 panel to a clinical dataset of 26 self-reported Hispanic patients in South Texas with hepatocellular carcinoma (HCC). We estimated the admixture proportions using WES data of adjacent non-cancer liver tissues (AFR, 0.065 ± 0.043; EUR, 0.594 ± 0.150; and EAS, 0.341 ± 0.160). Similar admixture proportions were identified from corresponding tumor tissues. In addition, we estimated admixture proportions of The Cancer Genome Atlas (TCGA) collection of hepatocellular carcinoma (TCGA-LIHC) samples (376 patients) using the UT-AIM250 panel. The panel obtained consistent admixture proportions from tumor and matched normal tissues, identified 3 possible incorrectly reported race/ethnicity, and/or provided race/ethnicity determination if necessary. CONCLUSIONS: Here we demonstrated the feasibility of using evolutionarily conserved exonic regions to infer admixture proportions and provided a robust and reliable control for sample collection or patient stratification for genetic analysis. R implementation of UT-AIM250 is available at https://github.com/chenlabgccri/UT-AIM250.


Assuntos
Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Hispânico ou Latino/genética , Carcinoma Hepatocelular/etnologia , Carcinoma Hepatocelular/genética , Etnicidade/genética , Éxons/genética , Frequência do Gene , Testes Genéticos , Genética Populacional , Genótipo , Humanos , Neoplasias Hepáticas/etnologia , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único , Software
2.
J Cell Biochem ; 116(3): 431-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25336019

RESUMO

Isoproterenol, a ß-adrenergic agonist, has been shown to induce salivary gland hyperplasia. However, the mechanism involved in this pharmacological phenomenon is not well understood. To gain a better understanding of the underlying changes, including genes, networks and pathways altered by isoproterenol, microarray-based gene expression analysis was conducted on rat parotid glands at 10, 30, and 60 min after isoproterenol injection. After isoproterenol treatment, the number of differentially expressed genes was increased in a time-dependent manner. Pathway analysis showed that cell hyperplasia, p38(MAPK), and IGF-1 were the most altered function, network and pathway, respectively. The balanced regulation of up- and down-expression of genes related to cell proliferation/survival may provide a better understanding of the mechanism of isoproterenol-induced parotid gland enlargement without tumor transformation.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Isoproterenol/farmacologia , Glândulas Salivares/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Glândulas Salivares/efeitos dos fármacos
3.
medRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38746245

RESUMO

Background: The incidence and mortality rates of hepatocellular carcinoma (HCC) among Hispanics in the United States are much higher than those of non-Hispanic whites. We conducted comprehensive multi-omics analyses to understand molecular alterations in HCC among Hispanic patients. Methods: Paired tumor and adjacent non-tumor samples were collected from 31 Hispanic HCC in South Texas (STX-Hispanic) for genomic, transcriptomic, proteomic, and metabolomic profiling. Additionally, serum lipids were profiled in 40 Hispanic and non-Hispanic patients with or without clinically diagnosed HCC. Results: Exome sequencing revealed high mutation frequencies of AXIN2 and CTNNB1 in STX Hispanic HCCs, suggesting a predominant activation of the Wnt/ß-catenin pathway. The TERT promoter mutation frequency was also remarkably high in the Hispanic cohort. Cell cycles and liver functions were identified as positively- and negatively-enriched, respectively, with gene set enrichment analysis. Gene sets representing specific liver metabolic pathways were associated with dysregulation of corresponding metabolites. Negative enrichment of liver adipogenesis and lipid metabolism corroborated with a significant reduction in most lipids in the serum samples of HCC patients. Two HCC subtypes from our Hispanic cohort were identified and validated with the TCGA liver cancer cohort. The subtype with better overall survival showed higher activity of immune and angiogenesis signatures, and lower activity of liver function-related gene signatures. It also had higher levels of immune checkpoint and immune exhaustion markers. Conclusions: Our study revealed some specific molecular features of Hispanic HCC and potential biomarkers for therapeutic management of HCC and provides a unique resource for studying Hispanic HCC.

4.
Mol Cancer Ther ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648067

RESUMO

We recently reported that resistance to PD-1-blockade in a refractory lung cancer-derived model involved increased collagen deposition and the collagen-binding inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), and thus we hypothesized that LAIR1 and collagen cooperated to suppress therapeutic response. Here, we report LAIR1 is associated with tumor stroma and is highly expressed by intratumoral myeloid cells in both human tumors and mouse models of cancer. Stroma-associated myeloid cells exhibit a suppressive phenotype and correlate with LAIR1 expression in human cancer. NGM438, a novel humanized LAIR1 antagonist monoclonal antibody, elicits myeloid inflammation and allogeneic T cell responses by binding to LAIR1 and blocking collagen engagement. Further, a mouse-reactive NGM438 surrogate antibody sensitized refractory KP mouse lung tumors to anti-PD-1 therapy and resulted in increased intratumoral CD8+ T cell content and inflammatory gene expression. These data place LAIR1 at the intersection of stroma and suppressive myeloid cells and support the notion that blockade of the LAIR1/collagen axis can potentially address resistance to checkpoint inhibitor therapy in the clinic.

5.
Cancer Immunol Res ; 9(11): 1283-1297, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34426457

RESUMO

Suppressive myeloid cells inhibit antitumor immunity by preventing T-cell responses. Immunoglobulin-like transcript 3 (ILT3; also known as LILRB4) is highly expressed on tumor-associated myeloid cells and promotes their suppressive phenotype. However, the ligand that engages ILT3 within the tumor microenvironment and renders tumor-associated myeloid cells suppressive is unknown. Using a screening approach, we identified fibronectin as a functional ligand for ILT3. The interaction of fibronectin with ILT3 polarized myeloid cells toward a suppressive state, and these effects were reversed with an ILT3-specific antibody that blocked the interaction of ILT3 with fibronectin. Furthermore, ex vivo treatment of human tumor explants with anti-ILT3 reprogrammed tumor-associated myeloid cells toward a stimulatory phenotype. Thus, the ILT3-fibronectin interaction represents a "stromal checkpoint" through which the extracellular matrix actively suppresses myeloid cells. By blocking this interaction, tumor-associated myeloid cells may acquire a stimulatory phenotype, potentially resulting in increased antitumor T-cell responses.


Assuntos
Fibronectinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Receptores Imunológicos/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos
6.
Cancer Inform ; 13(Suppl 5): 25-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25392691

RESUMO

The purpose of this study is to characterize the microRNA (miRNA) expression profiles of induced pluripotent stem (iPS) cells and retinal pigment epithelium (RPE) derived from induced pluripotent stem cells (iPS-RPE). MiRNAs have been demonstrated to play critical roles in both maintaining pluripotency and facilitating differentiation. Gene expression networks accountable for maintenance and induction of pluripotency are linked and share components with those networks implicated in oncogenesis. Therefore, we hypothesize that miRNA expression profiling will distinguish iPS cells from their iPS-RPE progeny. To identify and analyze differentially expressed miRNAs, RPE was derived from iPS using a spontaneous differentiation method. MiRNA microarray analysis identified 155 probes that were statistically differentially expressed between iPS and iPS-RPE cells. Up-regulated miRNAs including miR-181c and miR-129-5p may play a role in promoting differentiation, while down-regulated miRNAs such as miR-367, miR-18b, and miR-20b are implicated in cell proliferation. Subsequent miRNA-target and network analysis revealed that these miRNAs are involved in cellular development, cell cycle progression, cell death, and survival. A systematic interrogation of temporal and spatial expression of iPS-RPE miRNAs and their associated target mRNAs will provide new insights into the molecular mechanisms of carcinogenesis, eye differentiation and development.

7.
BMC Res Notes ; 4: 394, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21985277

RESUMO

BACKGROUND: Circular Binary Segmentation (CBS) is a permutation-based algorithm for array Comparative Genomic Hybridization (aCGH) data analysis. CBS accurately segments data by detecting change-points using a maximal-t test; but extensive computational burden is involved for evaluating the significance of change-points using permutations. A recent implementation utilizing a hybrid method and early stopping rules (hybrid CBS) to improve the performance in speed was subsequently proposed. However, a time analysis revealed that a major portion of computation time of the hybrid CBS was still spent on permutation. In addition, what the hybrid method provides is an approximation of the significance upper bound or lower bound, not an approximation of the significance of change-points itself. RESULTS: We developed a novel model-based algorithm, extreme-value based CBS (eCBS), which limits permutations and provides robust results without loss of accuracy. Thousands of aCGH data under null hypothesis were simulated in advance based on a variety of non-normal assumptions, and the corresponding maximal-t distribution was modeled by the Generalized Extreme Value (GEV) distribution. The modeling results, which associate characteristics of aCGH data to the GEV parameters, constitute lookup tables (eXtreme model). Using the eXtreme model, the significance of change-points could be evaluated in a constant time complexity through a table lookup process. CONCLUSIONS: A novel algorithm, eCBS, was developed in this study. The current implementation of eCBS consistently outperforms the hybrid CBS 4× to 20× in computation time without loss of accuracy. Source codes, supplementary materials, supplementary figures, and supplementary tables can be found at http://ntumaps.cgm.ntu.edu.tw/eCBSsupplementary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA