Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurosci ; 38(4): 1030-1041, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29255009

RESUMO

Hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of ryanodine receptor Ca2+ release, reverses aging-induced memory impairment and neuronal Ca2+ dysregulation. Here, we tested the hypothesis that FKBP1b also can protect downstream transcriptional networks from aging-induced dysregulation. We gave hippocampal microinjections of FKBP1b-expressing viral vector to male rats at either 13 months of age (long-term, LT) or 19 months of age (short-term, ST) and tested memory performance in the Morris water maze at 21 months of age. Aged rats treated ST or LT with FKBP1b substantially outperformed age-matched vector controls and performed similarly to each other and young controls (YCs). Transcriptional profiling in the same animals identified 2342 genes with hippocampal expression that was upregulated/downregulated in aged controls (ACs) compared with YCs (the aging effect). Of these aging-dependent genes, 876 (37%) also showed altered expression in aged FKBP1b-treated rats compared with ACs, with FKBP1b restoring expression of essentially all such genes (872/876, 99.5%) in the direction opposite the aging effect and closer to levels in YCs. This inverse relationship between the aging and FKBP1b effects suggests that the aging effects arise from FKBP1b deficiency. Functional category analysis revealed that genes downregulated with aging and restored by FKBP1b were associated predominantly with diverse brain structure categories, including cytoskeleton, membrane channels, and extracellular region. Conversely, genes upregulated with aging but not restored by FKBP1b associated primarily with glial-neuroinflammatory, ribosomal, and lysosomal categories. Immunohistochemistry confirmed aging-induced rarefaction and FKBP1b-mediated restoration of neuronal microtubular structure. Therefore, a previously unrecognized genomic network modulating diverse brain structural processes is dysregulated by aging and restored by FKBP1b overexpression.SIGNIFICANCE STATEMENT Previously, we found that hippocampal overexpression of FK506-binding protein 12.6/1b (FKBP1b), a negative regulator of intracellular Ca2+ responses, reverses both aging-related Ca2+ dysregulation and cognitive impairment. Here, we tested whether hippocampal FKBP1b overexpression also counteracts aging changes in gene transcriptional networks. In addition to reducing memory deficits in aged rats, FKBP1b selectively counteracted aging-induced expression changes in 37% of aging-dependent genes, with cytoskeletal and extracellular structure categories highly associated with the FKBP1b-rescued genes. Our results indicate that, in parallel with cognitive processes, a novel transcriptional network coordinating brain structural organization is dysregulated with aging and restored by FKBP1b.


Assuntos
Envelhecimento/fisiologia , Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Memória/fisiologia , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Hipocampo/fisiopatologia , Masculino , Transtornos da Memória/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos
2.
Proc Natl Acad Sci U S A ; 111(41): E4359-66, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267625

RESUMO

Vitamin D is an important calcium-regulating hormone with diverse functions in numerous tissues, including the brain. Increasing evidence suggests that vitamin D may play a role in maintaining cognitive function and that vitamin D deficiency may accelerate age-related cognitive decline. Using aging rodents, we attempted to model the range of human serum vitamin D levels, from deficient to sufficient, to test whether vitamin D could preserve or improve cognitive function with aging. For 5-6 mo, middle-aged F344 rats were fed diets containing low, medium (typical amount), or high (100, 1,000, or 10,000 international units/kg diet, respectively) vitamin D3, and hippocampal-dependent learning and memory were then tested in the Morris water maze. Rats on high vitamin D achieved the highest blood levels (in the sufficient range) and significantly outperformed low and medium groups on maze reversal, a particularly challenging task that detects more subtle changes in memory. In addition to calcium-related processes, hippocampal gene expression microarrays identified pathways pertaining to synaptic transmission, cell communication, and G protein function as being up-regulated with high vitamin D. Basal synaptic transmission also was enhanced, corroborating observed effects on gene expression and learning and memory. Our studies demonstrate a causal relationship between vitamin D status and cognitive function, and they suggest that vitamin D-mediated changes in hippocampal gene expression may improve the likelihood of successful brain aging.


Assuntos
Envelhecimento/patologia , Transtornos Cognitivos/prevenção & controle , Transtornos Cognitivos/fisiopatologia , Hipocampo/fisiopatologia , Transmissão Sináptica , Vitamina D/uso terapêutico , Envelhecimento/efeitos dos fármacos , Animais , Transtornos Cognitivos/tratamento farmacológico , Dieta , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Endogâmicos F344 , Elementos de Resposta/genética , Software , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Vitamina D/sangue , Vitamina D/farmacologia
3.
J Neurosci ; 35(30): 10878-87, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26224869

RESUMO

Brain Ca2+ regulatory processes are altered during aging, disrupting neuronal, and cognitive functions. In hippocampal pyramidal neurons, the Ca2+ -dependent slow afterhyperpolarization (sAHP) exhibits an increase with aging, which correlates with memory impairment. The increased sAHP results from elevated L-type Ca2+ channel activity and ryanodine receptor (RyR)-mediated Ca2+ release, but underlying molecular mechanisms are poorly understood. Previously, we found that expression of the gene encoding FK506-binding protein 12.6/1b (FKBP1b), a small immunophilin that stabilizes RyR-mediated Ca2+ release in cardiomyocytes, declines in hippocampus of aged rats and Alzheimer's disease subjects. Additionally, knockdown/disruption of hippocampal FKBP1b in young rats augments neuronal Ca2+ responses. Here, we test the hypothesis that declining FKBP1b underlies aging-related hippocampal Ca2+ dysregulation. Using microinjection of adeno-associated viral vector bearing a transgene encoding FKBP1b into the hippocampus of aged male rats, we assessed the critical prediction that overexpressing FKBP1b should reverse Ca2+ -mediated manifestations of brain aging. Immunohistochemistry and qRT-PCR confirmed hippocampal FKBP1b overexpression 4-6 weeks after injection. Compared to aged vector controls, aged rats overexpressing FKBP1b showed dramatic enhancement of spatial memory, which correlated with marked reduction of sAHP magnitude. Furthermore, simultaneous electrophysiological recording and Ca2+ imaging in hippocampal neurons revealed that the sAHP reduction was associated with a decrease in parallel RyR-mediated Ca2+ transients. Thus, hippocampal FKBP1b overexpression reversed key aspects of Ca2+ dysregulation and cognitive impairment in aging rats, supporting the novel hypothesis that declining FKBP1b is a molecular mechanism underlying aging-related Ca2+ dysregulation and unhealthy brain aging and pointing to FKBP1b as a potential therapeutic target. SIGNIFICANCE STATEMENT: This paper reports critical tests of a novel hypothesis that proposes a molecular mechanism of unhealthy brain aging and possibly, Alzheimer's disease. For more than 30 years, evidence has been accumulating that brain aging is associated with dysregulation of calcium in neurons. Recently, we found that FK506-binding protein 12.6/1b (FKBP1b), a small protein that regulates calcium, declines with aging in the hippocampus, a brain region important for memory. Here we used gene therapy approaches and found that raising FKBP1b reversed calcium dysregulation and memory impairment in aging rats, allowing them to perform a memory task as well as young rats. These studies identify a potential molecular mechanism of brain aging and may also have implications for treatment of Alzheimer's disease.


Assuntos
Envelhecimento/fisiologia , Cálcio/metabolismo , Cognição/fisiologia , Neurônios/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Endogâmicos F344 , Ratos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Transgenes
4.
BMC Genomics ; 16: 212, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25879800

RESUMO

BACKGROUND: Arsenic (As) exposure is a significant worldwide environmental health concern. Low dose, chronic arsenic exposure has been associated with a higher than normal risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. While arsenic-induced biological changes play a role in disease pathology, little is known about the dynamic cellular changes resulting from arsenic exposure and withdrawal. RESULTS: In these studies, we sought to understand the molecular mechanisms behind the biological changes induced by arsenic exposure. A comprehensive global approach was employed to determine genome-wide changes to chromatin structure, transcriptome patterns and splicing patterns in response to chronic low dose arsenic and its subsequent withdrawal. Our results show that cells exposed to chronic low doses of sodium arsenite have distinct temporal and coordinated chromatin, gene expression, and miRNA changes consistent with differentiation and activation of multiple biochemical pathways. Most of these temporal patterns in gene expression are reversed when arsenic is withdrawn. However, some gene expression patterns remained altered, plausibly as a result of an adaptive response by cells. Additionally, the correlation of changes to gene expression and chromatin structure solidify the role of chromatin structure in gene regulatory changes due to arsenite exposure. Lastly, we show that arsenite exposure influences gene regulation both at the initiation of transcription as well as at the level of splicing. CONCLUSIONS: Our results show that adaptation of cells to iAs-mediated EMT is coupled to changes in chromatin structure effecting differential transcriptional and splicing patterns of genes. These studies provide new insights into the mechanism of iAs-mediated pathology, which includes epigenetic chromatin changes coupled with changes to the transcriptome and splicing patterns of key genes.


Assuntos
Arsenitos/toxicidade , Cromatina/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , Compostos de Sódio/toxicidade , Transcriptoma/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Cromatina/química , Cromatina/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células HeLa , Humanos , MicroRNAs/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
J Clin Periodontol ; 41(4): 327-39, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24304139

RESUMO

AIM: Gingival tissues of periodontitis lesions contribute to local elevations in mediators, including both specific T cell and antibody immune responses to oral bacterial antigens. Thus, antigen processing and presentation activities must exist in these tissues to link antigen-presenting cells with adaptive immunity. We hypothesized that alterations in the transcriptome of antigen processing and presentation genes occur in ageing gingival tissues and that periodontitis enhances these differences reflecting tissues less capable of immune resistance to oral pathogens. MATERIALS AND METHODS: Rhesus monkeys (n = 34) from 3 to 23 years of age were examined. A buccal gingival sample from healthy or periodontitis sites was obtained, total RNA isolated, and microarray analysis was used to describe the transcriptome. RESULTS: The results demonstrated increased transcription of genes related to the MHC class II and negative regulation of NK cells with ageing in healthy gingival tissues. In contrast, both adult and ageing periodontitis tissues showed decreased transcription of genes for MHC class II antigens, coincident with up-regulation of MHC class I-associated genes. CONCLUSION: These transcriptional changes suggest a response of healthy ageing tissues through the class II pathway (i.e. endocytosed antigens) and altered responses in periodontitis that could reflect host-associated self-antigens or targeting cytosolic intracellular microbial pathogens.


Assuntos
Envelhecimento/imunologia , Apresentação de Antígeno/imunologia , Gengiva/imunologia , Periodontite/imunologia , Imunidade Adaptativa/imunologia , Envelhecimento/genética , Animais , Anticorpos/imunologia , Apresentação de Antígeno/genética , Células Apresentadoras de Antígenos/imunologia , Catepsinas/genética , Catepsinas/imunologia , Feminino , Perfilação da Expressão Gênica , Cadeias beta de HLA-DP/genética , Cadeias beta de HLA-DP/imunologia , Cadeias alfa de HLA-DR/genética , Cadeias alfa de HLA-DR/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Células Matadoras Naturais/imunologia , Macaca mulatta , Masculino , Análise em Microsséries , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/imunologia , Análise de Componente Principal , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Transcriptoma/genética , Transcriptoma/imunologia
6.
Front Cell Infect Microbiol ; 13: 1110508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875520

RESUMO

We previously demonstrated that brain-resident cells produce IFN-γ in response to reactivation of cerebral infection with Toxoplasma gondii. To obtain an overall landscape view of the effects of IFN-γ from brain-resident cells on the cerebral protective immunity, in the present study we employed NanoString nCounter assay and quantified mRNA levels for 734 genes in myeloid immunity in the brains of T and B cell-deficient, bone marrow chimeric mice with and without IFN-γ production by brain-resident cells in response to reactivation of cerebral T. gondii infection. Our study revealed that IFN-γ produced by brain-resident cells amplified mRNA expression for the molecules to activate the protective innate immunity including 1) chemokines for recruitment of microglia and macrophages (CCL8 and CXCL12) and 2) the molecules for activating those phagocytes (IL-18, TLRs, NOD1, and CD40) for killing tachyzoites. Importantly, IFN-γ produced by brain-resident cells also upregulated cerebral expression of molecules for facilitating the protective T cell immunity, which include the molecules for 1) recruiting effector T cells (CXCL9, CXCL10, and CXCL11), 2) antigen processing (PA28αß, LMP2, and LMP7), transporting the processed peptides (TAP1 and TAP2), assembling the transported peptides to the MHC class I molecules (Tapasin), and the MHC class I (H2-K1 and H2-D1) and Ib molecules (H2-Q1, H-2Q2, and H2-M3) for presenting antigens to activate the recruited CD8+ T cells, 3) MHC class II molecules (H2-Aa, H2-Ab1, H2-Eb1, H2-Ea-ps, H2-DMa, H2-Ob, and CD74) to present antigens for CD4+ T cell activation, 4) co-stimulatory molecules (ICOSL) for T cell activation, and 5) cytokines (IL-12, IL-15, and IL-18) facilitating IFN-γ production by NK and T cells. Notably, the present study also revealed that IFN-γ production by brain-resident cells also upregulates cerebral expressions of mRNA for the downregulatory molecules (IL-10, STAT3, SOCS1, CD274 [PD-L1], IL-27, and CD36), which can prevent overly stimulated IFN-γ-mediated pro-inflammatory responses and tissue damages. Thus, the present study uncovered the previously unrecognized the capability of IFN-γ production by brain-resident cells to upregulate expressions of a wide spectrum of molecules for coordinating both innate and T cell-mediated protective immunity with a fine-tuning regulation system to effectively control cerebral infection with T. gondii.


Assuntos
Toxoplasma , Animais , Camundongos , Interleucina-18 , Infecção Persistente , Linfócitos T CD8-Positivos , Imunidade Celular , Interferon gama
7.
J Neurosci ; 31(5): 1693-703, 2011 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-21289178

RESUMO

With aging, multiple Ca(2+)-associated electrophysiological processes exhibit increased magnitude in hippocampal pyramidal neurons, including the Ca(2+)-dependent slow afterhyperpolarization (sAHP), L-type voltage-gated Ca(2+) channel (L-VGCC) activity, Ca(2+)-induced Ca(2+) release (CICR) from ryanodine receptors (RyRs), and Ca(2+) transients. This pattern of Ca(2+) dysregulation correlates with reduced neuronal excitability/plasticity and impaired learning/memory and has been proposed to contribute to unhealthy brain aging and Alzheimer's disease. However, little is known about the underlying molecular mechanisms. In cardiomyocytes, FK506-binding protein 1b/12.6 (FKBP1b) binds and stabilizes RyR2 in the closed state, inhibiting RyR-mediated Ca(2+) release. Moreover, we recently found that hippocampal Fkbp1b expression is downregulated, whereas Ryr2 and Frap1/Mtor (mammalian target of rapamycin) expression is upregulated with aging in rats. Here, we tested the hypothesis that disrupting FKBP1b function also destabilizes Ca(2+) homeostasis in hippocampal neurons and is sufficient to induce the aging phenotype of Ca(2+) dysregulation in young animals. Selective knockdown of Fkbp1b with interfering RNA in vitro (96 h) enhanced voltage-gated Ca(2+) current in cultured neurons, whereas in vivo Fkbp1b knockdown by microinjection of viral vector (3-4 weeks) dramatically increased the sAHP in hippocampal slice neurons from young-adult rats. Rapamycin, which displaces FKBP1b from RyRs in myocytes, similarly enhanced VGCC current and the sAHP and also increased CICR. Moreover, FKBP1b knockdown in vivo was associated with upregulation of RyR2 and mTOR protein expression. Thus, disruption of FKBP1b recapitulated much of the Ca(2+)-dysregulation aging phenotype in young rat hippocampus, supporting a novel hypothesis that declining FKBP function plays a major role in unhealthy brain aging.


Assuntos
Envelhecimento/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Hipocampo/fisiopatologia , Células Piramidais/fisiopatologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Envelhecimento/genética , Animais , Células Cultivadas , Eletrofisiologia , Técnicas de Silenciamento de Genes , Vetores Genéticos , Hipocampo/metabolismo , Homeostase/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Potenciais da Membrana/efeitos dos fármacos , Microinjeções , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase , Células Piramidais/metabolismo , Ratos , Ratos Endogâmicos F344 , Sirolimo/farmacologia , Proteínas de Ligação a Tacrolimo/genética
8.
J Virol ; 85(24): 13174-84, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21994447

RESUMO

Previously, we have shown that horses could be divided into susceptible and resistant groups based on an in vitro assay using dual-color flow cytometric analysis of CD3+ T cells infected with equine arteritis virus (EAV). Here, we demonstrate that the differences in in vitro susceptibility of equine CD3+ T lymphocytes to EAV infection have a genetic basis. To investigate the possible hereditary basis for this trait, we conducted a genome-wide association study (GWAS) to compare susceptible and resistant phenotypes. Testing of 267 DNA samples from four horse breeds that had a susceptible or a resistant CD3+ T lymphocyte phenotype using both Illumina Equine SNP50 BeadChip and Sequenom's MassARRAY system identified a common, genetically dominant haplotype associated with the susceptible phenotype in a region of equine chromosome 11 (ECA11), positions 49572804 to 49643932. The presence of a common haplotype indicates that the trait occurred in a common ancestor of all four breeds, suggesting that it may be segregated among other modern horse breeds. Biological pathway analysis revealed several cellular genes within this region of ECA11 encoding proteins associated with virus attachment and entry, cytoskeletal organization, and NF-κB pathways that may be associated with the trait responsible for the in vitro susceptibility/resistance of CD3+ T lymphocytes to EAV infection. The data presented in this study demonstrated a strong association of genetic markers with the trait, representing de facto proof that the trait is under genetic control. To our knowledge, this is the first GWAS of an equine infectious disease and the first GWAS of equine viral arteritis.


Assuntos
Infecções por Arterivirus/veterinária , Equartevirus/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Doenças dos Cavalos/genética , Doenças dos Cavalos/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Infecções por Arterivirus/genética , Infecções por Arterivirus/imunologia , Infecções por Arterivirus/virologia , Complexo CD3/análise , Equartevirus/patogenicidade , Marcadores Genéticos , Haplótipos , Doenças dos Cavalos/virologia , Cavalos , Subpopulações de Linfócitos T/química , Subpopulações de Linfócitos T/virologia
9.
J Neurosci ; 30(17): 6058-71, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20427664

RESUMO

Age-dependent metabolic syndrome (MetS) is a well established risk factor for cardiovascular disease, but it also confers major risk for impaired cognition in normal aging or Alzheimer's disease (AD). However, little is known about the specific pathways mediating MetS-brain interactions. Here, we performed the first studies quantitatively linking MetS variables to aging changes in brain genome-wide expression and mitochondrial function. In six young adult and six aging female rhesus monkeys, we analyzed gene expression in two major hippocampal subdivisions critical for memory/cognitive function [hippocampus proper, or cornu ammonis (CA), and dentate gyrus (DG)]. Genes that changed with aging [aging-related genes (ARGs)] were identified in each region. Serum variables reflecting insulin resistance and dyslipidemia were used to construct a quantitative MetS index (MSI). This MSI increased with age and correlated negatively with hippocampal mitochondrial function (state III oxidation). More than 2000 ARGs were identified in CA and/or DG, in approximately equal numbers, but substantially more ARGs in CA than in DG were correlated selectively with the MSI. Pathways represented by MSI-correlated ARGs were determined from the Gene Ontology Database and literature. In particular, upregulated CA ARGs representing glucocorticoid receptor (GR), chromatin assembly/histone acetyltransferase, and inflammatory/immune pathways were closely associated with the MSI. These results suggest a novel model in which MetS is associated with upregulation of hippocampal GR-dependent transcription and epigenetic coactivators, contributing to decreased mitochondrial function and brain energetic dysregulation. In turn, these MSI-associated neuroenergetic changes may promote inflammation, neuronal vulnerability, and risk of cognitive impairment/AD.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Giro Denteado/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Envelhecimento/sangue , Animais , Bases de Dados Genéticas , Dislipidemias/sangue , Dislipidemias/genética , Dislipidemias/metabolismo , Feminino , Insulina/metabolismo , Resistência à Insulina , Macaca mulatta , Síndrome Metabólica/sangue , Mitocôndrias/metabolismo , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Especificidade da Espécie
10.
J Neurochem ; 109(6): 1800-11, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19453298

RESUMO

Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia and is especially prevalent in the elderly. Because aging is a risk factor for type 2 diabetes mellitus, and insulin resistance may contribute to the pathogenesis of Alzheimer's disease (AD), anti-diabetic agents (thiazolidinediones-TZDs) are being studied for the treatment of cognitive decline associated with AD. These agents normalize insulin sensitivity in the periphery and can improve cognition and verbal memory in AD patients. Based on evidence that Ca(2+) dysregulation is a pathogenic factor of brain aging/AD, we tested the hypothesis that TZDs could impact Ca(2+) signaling/homeostasis in neurons. We assessed the effects of pioglitazone and rosiglitazone (TZDs) on two major sources of Ca(2+) influx in primary hippocampal cultured neurons, voltage-gated Ca(2+) channel (VGCC) and the NMDA receptor (NMDAR). VGCC- and NMDAR-mediated Ca(2+) currents were recorded using patch-clamp techniques, and Ca(2+) intracellular levels were monitored with Ca(2+) imaging techniques. Rosiglitazone, but not pioglitazone reduced VGCC currents. In contrast, NMDAR-mediated currents were significantly reduced by pioglitazone but not rosiglitazone. These results show that TZDs modulate Ca(2+)-dependent pathways in the brain and have different inhibitory profiles on two major Ca(2+) sources, potentially conferring neuroprotection to an area of the brain that is particularly vulnerable to the effects of aging and/or AD.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cálcio/metabolismo , Hipocampo/citologia , Neurônios/efeitos dos fármacos , PPAR gama/agonistas , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica/métodos , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipoglicemiantes/farmacologia , Neuroglia , PPAR gama/metabolismo , Técnicas de Patch-Clamp/métodos , Pioglitazona , Gravidez , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Rosiglitazona , Tiazolidinedionas/farmacologia , Fatores de Tempo
11.
Environ Pollut ; 247: 917-926, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30823346

RESUMO

Manufactured nanoparticles (MNPs) undergo transformation immediately after they enter wastewater treatment streams and during their partitioning to sewage sludge, which is applied to agricultural soils in form of biosolids. We examined toxicogenomic responses of the model nematode Caenorhabditis elegans to pristine and transformed ZnO-MNPs (phosphatized pZnO- and sulfidized sZnO-MNPs). To account for the toxicity due to dissolved Zn, a ZnSO4 treatment was included. Transformation of ZnO-MNPs reduced their toxicity by nearly ten-fold, while there was almost no difference in the toxicity of pristine ZnO-MNPs and ZnSO4. This combined with the fact that far more dissolved Zn was released from ZnO- compared to pZnO- or sZnO-MNPs, suggests that dissolution of pristine ZnO-MNPs is one of the main drivers of their toxicity. Transcriptomic responses at the EC30 for reproduction resulted in a total of 1161 differentially expressed genes. Fifty percent of the genes differentially expressed in the ZnSO4 treatment, including the three metal responsive genes (mtl-1, mtl-2 and numr-1), were shared among all treatments, suggesting that responses to all forms of Zn could be partially attributed to dissolved Zn. However, the toxicity and transcriptomic responses in all MNP treatments cannot be fully explained by dissolved Zn. Two of the biological pathways identified, one essential for protein biosynthesis (Aminoacyl-tRNA biosynthesis) and another associated with detoxification (ABC transporters), were shared among pristine and one or both transformed ZnO-MNPs, but not ZnSO4. When comparing pristine and transformed ZnO-MNPs, 66% and 40% of genes were shared between ZnO-MNPs and sZnO-MNPs or pZnO-MNPs, respectively. This suggests greater similarity in transcriptomic responses between ZnO-MNPs and sZnO-MNPs, while toxicity mechanisms are more distinct for pZnO-MNPs, where 13 unique biological pathways were identified. Based on these pathways, the toxicity of pZnO-MNPs is likely to be associated with their adverse effect on digestion and metabolism.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Poluentes do Solo/toxicidade , Óxido de Zinco/toxicidade , Animais , Caenorhabditis elegans/genética , Esgotos , Transcriptoma/efeitos dos fármacos , Sulfato de Zinco/química
12.
J Neurosci ; 27(12): 3098-110, 2007 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-17376971

RESUMO

Although expression of some genes is known to change during neuronal activity or plasticity, the overall relationship of gene expression changes to memory or memory disorders is not well understood. Here, we combined extensive statistical microarray analyses with behavioral testing to comprehensively identify genes and pathways associated with aging and cognitive dysfunction. Aged rats were separated into cognitively unimpaired (AU) or impaired (AI) groups based on their Morris water maze performance relative to young-adult (Y) animals. Hippocampal gene expression was assessed in Y, AU, and AI on the fifth (last) day of maze training (5T) or 21 d posttraining (21PT) and in nontrained animals (eight groups total, one array per animal; n = 78 arrays). ANOVA and linear contrasts identified genes that differed from Y generally with aging (differed in both AU and AI) or selectively, with cognitive status (differed only in AI or AU). Altered pathways/processes were identified by overrepresentation analyses of changed genes. With general aging, there was downregulation of axonal growth, cytoskeletal assembly/transport, signaling, and lipogenic/uptake pathways, concomitant with upregulation in immune/inflammatory, lysosomal, lipid/protein degradation, cholesterol transport, transforming growth factor, and cAMP signaling pathways, primarily independent of training condition. Selectively, in AI, there was downregulation at 5T of immediate-early gene, Wnt (wingless integration site), insulin, and G-protein signaling, lipogenesis, and glucose utilization pathways, whereas Notch2 (oligodendrocyte development) and myelination pathways were upregulated, particularly at 21PT. In AU, receptor/signal transduction genes were upregulated, perhaps as compensatory responses. Immunohistochemistry confirmed and extended selected microarray results. Together, the findings suggest a new model, in which deficient neuroenergetics leads to downregulated neuronal signaling and increased glial activation, resulting in aging-related cognitive dysfunction.


Assuntos
Transtornos Cognitivos/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Genes Precoces/fisiologia , Hipocampo/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Fatores Etários , Animais , Transtornos Cognitivos/genética , Transtornos Cognitivos/patologia , Hipocampo/citologia , Masculino , Aprendizagem em Labirinto/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Ratos , Ratos Endogâmicos F344
13.
Cancer Res ; 66(8): 4329-38, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16618758

RESUMO

The clinical application of adriamycin, an exceptionally good chemotherapeutic agent, is limited by its dose-related cardiomyopathy. Our recent study showed that tumor necrosis factor-alpha (TNF-alpha) receptors mediated cytoprotective signaling against adriamycin-induced mitochondrial injury and cardiomyocyte apoptosis. In the present study, we investigated the potential targets of TNF receptor-mediated cytoprotective signaling by global genome microarray analysis using wild-type and TNF receptor-deficient mice. Microarray analysis revealed that adriamycin treatment induced the down-regulation of several mitochondrial functions and energy production-related genes in double TNF receptor-deficient mice, notably, phospholipase C-delta1, a protein involved in fatty acid metabolism and calcium regulation. The role of phospholipase C-delta1 in TNF receptor-mediated cardioprotection against adriamycin-induced injury was evaluated by measuring changes in cardiac function using high-frequency ultrasound biomicroscopy. Selective inhibition of phospholipase C activity in wild-type mice by its inhibitor, U73122, exacerbated adriamycin-induced cardiac dysfunction. Inhibition of phospholipase C-delta1 resulted in the significant decrease of left ventricular ejection fraction and fractional shortening, and the decreased levels were similar to those observed in adriamycin-treated double TNF receptor-deficient mice. The data derived from the global genome analysis identified phospholipase C-delta1 as an important target for TNF receptors and revealed the critical role of TNF receptor signaling in the protection against adriamycin-induced cardiotoxicity.


Assuntos
Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Cardiopatias/prevenção & controle , Isoenzimas/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Fosfolipases Tipo C/fisiologia , Animais , Regulação para Baixo/efeitos dos fármacos , Metabolismo Energético/genética , Estrenos/farmacologia , Cardiopatias/enzimologia , Cardiopatias/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/biossíntese , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Inibidores de Fosfodiesterase/farmacologia , Fosfolipase C delta , Pirrolidinonas/farmacologia , Receptores do Fator de Necrose Tumoral/deficiência , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/biossíntese , Fosfolipases Tipo C/metabolismo
14.
J Alzheimers Dis ; 66(4): 1371-1378, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30412490

RESUMO

Aging is the leading risk factor for idiopathic Alzheimer's disease (AD), indicating that normal aging processes promote AD and likely are present in the neurons in which AD pathogenesis originates. In AD, neurofibrillary tangles (NFTs) appear first in entorhinal cortex, implying that aging processes in entorhinal neurons promote NFT pathogenesis. Using electrophysiology and immunohistochemistry, we find pronounced aging-related Ca2 + dysregulation in rat entorhinal neurons homologous with the human neurons in which NFTs originate. Considering that humans recapitulate many aspects of animal brain aging, these results support the hypothesis that aging-related Ca2 + dysregulation occurs in human entorhinal neurons and promotes NFT pathogenesis.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Córtex Entorrinal/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/patologia , Animais , Córtex Entorrinal/patologia , Masculino , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Ratos , Ratos Endogâmicos F344
15.
Curr Alzheimer Res ; 4(2): 205-12, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17430248

RESUMO

The original glucocorticoid (GC) hypothesis of brain aging and Alzheimer's disease proposed that chronic exposure to GCs promotes hippocampal aging and AD. This proposition arose from a study correlating increasing plasma corticosterone with hippocampal astrocyte reactivity in aging rats. Numerous subsequent studies have found evidence consistent with this hypothesis, in animal models and in humans. However, several results emerged that were inconsistent with the hypothesis, highlighting the need for a more definitive test with a broader panel of biomarkers. We used microarray analyses to identify a panel of hippocampal gene expression changes that were aging-dependent, and also corticosterone-dependent. These data enabled us to test a key prediction of the GC hypothesis, namely, that the expression of most target biomarkers of brain aging should be regulated in the same direction (increased or decreased) by both GCs and aging. This prediction was decisively contradicted, as a majority of biomarker genes were regulated in opposite directions by aging and GCs, particularly inflammatory and astrocyte-specific genes. Thus, the initial hypothesis of simple positive cooperativity between GCs and aging must be rejected. Instead, our microarray data suggest that in the brain GCs and aging interact in more complex ways that depend on the cell type. Therefore, we propose a new version of the GC-brain aging hypothesis; its main premise is that aging selectively increases GC efficacy in some cell types (e.g., neurons), enhancing catabolic processes, whereas aging selectively decreases GC efficacy in other cell types (e.g., astrocytes), weakening GC anti-inflammatory activity. We also propose that changes in GC efficacy might be mediated in part by cell type specific shifts in the antagonistic balance between GC and insulin actions, which may be of relevance for Alzheimer's disease pathogenesis.


Assuntos
Envelhecimento , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Glucocorticoides/fisiologia , Doença de Alzheimer/genética , Animais , Encéfalo/metabolismo , Humanos , Modelos Biológicos
16.
J Neurosci ; 25(18): 4649-58, 2005 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15872113

RESUMO

Astrocyte reactivity (i.e., activation) and associated neuroinflammation are increasingly thought to contribute to neurodegenerative disease. However, the mechanisms that trigger astrocyte activation are poorly understood. Here, we studied the Ca2+-dependent phosphatase calcineurin, which regulates inflammatory signaling pathways in immune cells, for a role in astrogliosis and brain neuroinflammation. Adenoviral transfer of activated calcineurin to primary rat hippocampal cultures resulted in pronounced thickening of astrocyte somata and processes compared with uninfected or virus control cultures, closely mimicking the activated hypertrophic phenotype. This effect was blocked by the calcineurin inhibitor cyclosporin A. Parallel microarray studies, validated by extensive statistical analyses, showed that calcineurin overexpression also induced genes and cellular pathways representing most major markers associated with astrocyte activation and recapitulated numerous changes in gene expression found previously in the hippocampus of normally aging rats or in Alzheimer's disease (AD). No genomic or morphologic evidence of apoptosis or damage to neurons was seen, indicating that the calcineurin effect was mediated by direct actions on astrocytes. Moreover, immunocytochemical studies of the hippocampus/neocortex in normal aging and AD model mice revealed intense calcineurin immunostaining that was highly selective for activated astrocytes. Together, these studies show that calcineurin overexpression is sufficient to trigger essentially the full genomic and phenotypic profiles associated with astrocyte activation and that hypertrophic astrocytes in aging and AD models exhibit dramatic upregulation of calcineurin. Thus, the data identify calcineurin upregulation in astrocytes as a novel candidate for an intracellular trigger of astrogliosis, particularly in aging and AD brain.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Calcineurina/fisiologia , Inflamação/metabolismo , Adenoviridae/fisiologia , Fatores Etários , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Células Cultivadas , Ciclosporina/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Imunofluorescência/métodos , Vetores Genéticos/fisiologia , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise em Microsséries/métodos , Presenilina-1 , Ratos , Ratos Endogâmicos F344 , Regulação para Cima
17.
J Neurosci ; 23(9): 3807-19, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12736351

RESUMO

Gene expression microarrays provide a powerful new tool for studying complex processes such as brain aging. However, inferences from microarray data are often hindered by multiple comparisons, small sample sizes, and uncertain relationships to functional endpoints. Here we sought gene expression correlates of aging-dependent cognitive decline, using statistical profiling of gene microarrays in well powered groups of young, mid-aged, and aged rats (n = 10 per group). Animals were trained on two memory tasks, and the hippocampal CA1 region of each was analyzed on an individual microarray (one chip per animal). Aging- and cognition-related genes were identified by testing each gene by ANOVA (for aging effects) and then by Pearson's test (correlating expression with memory). Genes identified by this algorithm were associated with several phenomena known to be aging-dependent, including inflammation, oxidative stress, altered protein processing, and decreased mitochondrial function, but also with multiple processes not previously linked to functional brain aging. These novel processes included downregulated early response signaling, biosynthesis and activity-regulated synaptogenesis, and upregulated myelin turnover, cholesterol synthesis, lipid and monoamine metabolism, iron utilization, structural reorganization, and intracellular Ca2+ release pathways. Multiple transcriptional regulators and cytokines also were identified. Although most gene expression changes began by mid-life, cognition was not clearly impaired until late life. Collectively, these results suggest a new integrative model of brain aging in which genomic alterations in early adulthood initiate interacting cascades of decreased signaling and synaptic plasticity in neurons, extracellular changes, and increased myelin turnover-fueled inflammation in glia that cumulatively induce aging-related cognitive impairment.


Assuntos
Envelhecimento/genética , Transtornos Cognitivos/genética , Perfilação da Expressão Gênica , Hipocampo/fisiologia , Algoritmos , Animais , Comportamento Animal , Biomarcadores , Cognição , Transtornos Cognitivos/diagnóstico , Sondas de DNA , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Desempenho Psicomotor , Ratos , Ratos Endogâmicos F344 , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
BMC Bioinformatics ; 4: 26, 2003 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12823867

RESUMO

BACKGROUND: Microarray technology has become a very important tool for studying gene expression profiles under various conditions. Biologists often pool RNA samples extracted from different subjects onto a single microarray chip to help defray the cost of microarray experiments as well as to correct for the technical difficulty in getting sufficient RNA from a single subject. However, the statistical, technical and financial implications of pooling have not been explicitly investigated. RESULTS: Modeling the resulting gene expression from sample pooling as a mixture of individual responses, we derived expressions for the experimental error and provided both upper and lower bounds for its value in terms of the variability among individuals and the number of RNA samples pooled. Using "virtual" pooling of data from real experiments and computer simulations, we investigated the statistical properties of RNA sample pooling. Our study reveals that pooling biological samples appropriately is statistically valid and efficient for microarray experiments. Furthermore, optimal pooling design(s) can be found to meet statistical requirements while minimizing total cost. CONCLUSIONS: Appropriate RNA pooling can provide equivalent power and improve efficiency and cost-effectiveness for microarray experiments with a modest increase in total number of subjects. Pooling schemes in terms of replicates of subjects and arrays can be compared before experiments are conducted.


Assuntos
Perfilação da Expressão Gênica/estatística & dados numéricos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , RNA/análise , RNA/genética , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Simulação por Computador/estatística & dados numéricos , Pesquisa Empírica , Perfilação da Expressão Gênica/economia , Perfilação da Expressão Gênica/métodos , Modelos Estatísticos , Análise de Sequência com Séries de Oligonucleotídeos/economia , Projetos Piloto , Projetos de Pesquisa/estatística & dados numéricos , Tamanho da Amostra
19.
Ageing Res Rev ; 2(2): 211-43, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12605961

RESUMO

We have utilized high-density GeneChip oligonucleotide arrays to investigate the use of the senescence-accelerated mouse (SAM) as a biogerontological resource to identify patterns of gene expression in the chemosensory-nasal mucosa. Gene profiling in chronologically young and old mice of the senescence-resistant (SAMR) and senescence-prone (SAMP) strains revealed 133 known genes that were modulated by a three-fold or greater change either in one strain or the other or in both strains during aging. We also identified known genes in our study which based on their encoded proteins were identified as aging-related genes in the aging neocortex and cerebellum of mice as reported by Lee et al. (2000) [Nat. Genet. 25 (2000) 294]. Changes in gene profiles for chemosensory-related genes including olfactory and vomeronasal receptors, sensory transduction-associated proteins, and odor and pheromone transport molecules in the young SAMR and SAMP were compared with age-matched C57BL/6J mice. An analysis of known gene expression profiles suggests that changes in the expression of immune factor genes and genes associated with cell cycle progression and cell death were particularly prominent in the old SAM strains. A preliminary cellular validation study supported the dysregulation of cell cycle-related genes in the old SAM strains. The results of our initial study indicated that the use of the SAM models of aging could provide substantive information leading to a more fundamental understanding of the aging process in the chemosensory-nasal mucosa at the genomic, molecular, and cellular levels.


Assuntos
Envelhecimento/genética , Células Quimiorreceptoras/metabolismo , Expressão Gênica , Mucosa Nasal/metabolismo , Progéria/genética , Progéria/metabolismo , Animais , Cerebelo/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Cavidade Nasal/metabolismo , Septo Nasal/metabolismo , Neocórtex/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Regulação para Cima
20.
Endocrinology ; 154(8): 2807-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23736296

RESUMO

Although glucocorticoids (GCs) are known to exert numerous effects in the hippocampus, their chronic regulatory functions remain poorly understood. Moreover, evidence is inconsistent regarding the long-standing hypothesis that chronic GC exposure promotes brain aging/Alzheimer disease. Here, we adrenalectomized male F344 rats at 15 months of age, maintained them for 3 months with implanted corticosterone (CORT) pellets producing low or intermediate (glucocorticoid receptor-activating) blood levels of CORT, and performed microarray/pathway analyses in hippocampal CA1. We defined the chronic GC-dependent transcriptome as 393 genes that exhibited differential expression between intermediate and low CORT groups. Short-term CORT (4 days) did not recapitulate this transcriptome. Functional processes/pathways overrepresented by chronic CORT-up-regulated genes included learning/plasticity, differentiation, glucose metabolism, and cholesterol biosynthesis, whereas processes overrepresented by CORT-down-regulated genes included inflammatory/immune/glial responses and extracellular structure. These profiles indicate that GCs chronically activate neuronal/metabolic processes while coordinately repressing a glial axis of reactivity/inflammation. We then compared the GC transcriptome with a previously defined hippocampal aging transcriptome, revealing a high proportion of common genes. Although CORT and aging moved expression of some common genes in the same direction, the majority were shifted in opposite directions by CORT and aging (eg, glial inflammatory genes down-regulated by CORT are up-regulated with aging). These results contradict the hypothesis that GCs simply promote brain aging and also suggest that the opposite direction shifts during aging reflect resistance to CORT regulation. Therefore, we propose a new model in which aging-related GC resistance develops in some target pathways, whereas GC overstimulation develops in others, together generating much of the brain aging phenotype.


Assuntos
Região CA1 Hipocampal/metabolismo , Corticosterona/farmacologia , Glucocorticoides/farmacologia , Transcriptoma/efeitos dos fármacos , Adrenalectomia , Envelhecimento/genética , Animais , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Ingestão de Líquidos/efeitos dos fármacos , Implantes de Medicamento , Ingestão de Alimentos/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Endogâmicos F344 , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA