Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Chem Chem Phys ; 20(39): 25467-25475, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30272075

RESUMO

MgxZn1-xO (ZMO) thin films with tunable Mg content were deposited by atomic layer deposition (ALD) on silicon substrates at 190 °C. The elemental and structural properties were acquired by X-ray photoelectron spectroscopy, transmission electron microscopy, atomic force microscopy and X-ray diffraction. Spectroscopic ellipsometry measurements were performed to reveal the evolution of the dielectric functions and critical points in the ZMO thin films by point-by-point fit in the photon energy range of 1.2-6.0 eV. The dependence of the dielectric functions on doping content is clearly demonstrated and physically explained. The critical point energies and the types of interband optical transitions were extracted from standard lineshape analysis of the second derivatives of the dielectric functions. The critical point features were discussed in terms of band structure modification and structural homogeneity arisen by introducing the Mg dopant into the films. Controlling these transitions by changing the doping content will be of practical significance in emerging ZMO-based thin-film photonic and optoelectronic devices.

2.
Phys Chem Chem Phys ; 19(19): 12022-12031, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28443855

RESUMO

Centimeter-scale WS2 ultrathin films were synthesized on sapphire substrates, and they showed highly oriented crystallographic growth along the c axis. Afterwards, the as-grown samples were systematically characterized using various detection methods. Reliable values of the roughness layer thickness and the film thickness were extracted using both atomic force microscopy (AFM) and spectroscopic ellipsometry (SE), and identified using Raman spectroscopy as well. The expansion and tensile strain along the [001] direction were discovered using X-ray diffraction (XRD) measurements. Accurate dielectric functions of WS2 films were derived from the point-by-point fitting results. The critical points (CPs) of WS2, which have not been reported so far, are precisely extracted from the standard critical point (SCP) model. Their origins are uniquely assigned to different interband electronic transitions in the Brillouin zone, including some novel optical structures above 3 eV, which were not investigated in earlier studies. In this work, it is found that dielectric functions are thickness-dependent, while CPs have an opposite nature, and their intrinsic mechanisms are revealed. The as-obtained results can be expected to help people develop more extensive applications of WS2.

3.
Opt Lett ; 41(21): 4907-4910, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805647

RESUMO

A new method for measuring the dielectric functions change with the thickness of nanometal thin films was proposed. To confirm the accuracy and reliability of the method, a nano-thin wedge-shaped gold (Au) film with continuously varied thicknesses was designed and prepared on K9 glass by direct-current-sputtering (DC-sputtering). The thicknesses and the dielectric functions in the wavelength range of 300-1100 nm of the nano-thin Au films were obtained by fitting the ellipsometric parameters with the Drude and critical points model. Results show that while the real part of the dielectric function (ϵ1) changes marginally with increasing film thickness, the imaginary part (ϵ2) decreases drastically with the film thickness, approaching a stable value when the film thickness increases up to about 42 nm. This method is particularly useful in the study of thickness-dependent optical properties of nano-thin film.

4.
Phys Chem Chem Phys ; 18(4): 3316-21, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26752103

RESUMO

The band gap and defect features of ultrathin ZrO2 films with varying thicknesses have been investigated by spectroscopic ellipsometry through the point-by-point data inversion method. The ε2-sprectra in the 3-6 eV range are extracted based on an optical model consisting of a Si substrate/effective ZrO2 film/air ambient structure where the effective ZrO2 film is a combination of interfacial layers and ZrO2. Evident widening of the band gap with a reducing size is observed when the effective ZrO2 films are below a critical thickness, somewhere between 8.80 nm and 17.13 nm. This is due to quantum-confinement and amorphous effects. Moreover, the sub-band-gap defects at interfacial layers and in bulk ZrO2 are identified and present strong thickness dependence as well. The interfacial defects at 3.26, 4.13, 4.43, and 4.77 eV mainly exist below the critical thickness and exhibit a significant suppression with increasing film thickness. The bulk defects at 4.15 eV and 4.46 eV dominate in ZrO2 films once they are over the critical thickness. The evolution of the band gap and defects is closely related to variance in the electronic structure of amorphous ZrO2. Our results may be helpful in understanding controversial problems concerning the size effect on ultrathin high-k oxide films and exploring the further miniaturization of electronic devices based on them.

5.
Opt Express ; 22 Suppl 7: A1843-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25607498

RESUMO

The optical properties and thermal stability of a 6-layered metal/dielectric film structure are investigated in this work. A high optical absorption average of > 98% is achieved in the broad spectral range of 250-1200 nm with experiment results, in good agreement with our simulated results. The samples have a typical layered structure of: SiO(2)(57.3 nm)/Ti(5.7 nm)/SiO(2) (67.1 nm)/Ti(11.6 nm)/SiO(2)(51.4 nm)/Cu(>100 nm), deposited on optically polished Si or K9-glass substrates by magnetron sputtering. The sample of the 6-layered metal/dielectric film structure has an AM1.5G solar absorptance of 95.5% with the features of low thermal emittance of 0.136 at 700K and good thermal stability, and will be potentially suitable for practical application in high-efficiency solar absorber devices in many fields.

6.
Opt Express ; 21(8): 9691-702, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609678

RESUMO

We propose multi-band metamaterial absorbers at microwave frequencies. The design, the analysis, the fabrication, and the measurement of the absorbers working in multiple bands are presented. The numerical simulations and the experiments in the microwave anechoic chamber were performed. The metamaterial absorbers consist of an delicate arrangement of donut-shape resonators with different sizes and a metallic background plane, separated by a dielectric. The near-perfect absorptions of dual, triple and quad peaks are persistent with polarization independence, and the effect of angle of incidence for both TE and TM modes was also elucidated. It was also found that the multiple-reflection theory was not suitable for explaining the absorption mechanism of our investigated structures. The results of this study are promising for the practical applications.


Assuntos
Manufaturas , Modelos Teóricos , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Absorção , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Micro-Ondas , Espalhamento de Radiação
7.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770343

RESUMO

It is of great technological importance in the field of plasmonic color generation to establish and understand the relationship between optical responses and the reflectance of metallic nanoparticles. Previously, a series of indium nanoparticle ensembles were fabricated using electron beam evaporation and inspected using spectroscopic ellipsometry (SE). The multi-oscillator Lorentz-Drude model demonstrated the optical responses of indium nanoparticles with different sizes and size distributions. The reflectance spectra and colorimetry characteristics of indium nanoparticles with unimodal and bimodal size distributions were interpreted based on the SE analysis. The trends of reflectance spectra were explained by the transfer matrix method. The effects of optical constants n and k of indium on the reflectance were demonstrated by mapping the reflectance contour lines on the n-k plane. Using oscillator decomposition, the influence of different electron behaviors in various indium structures on the reflectance spectra was revealed intuitively. The contribution of each oscillator on the colorimetry characteristics, including hue, lightness and saturation, were determined and discussed from the reflectance spectral analysis.

8.
Opt Express ; 20(27): 28953-62, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23263136

RESUMO

Optical properties and thermal stability of the solar selective absorber based on the metal/dielectric four-layer film structure were investigated in the variable temperature region. Numerical calculations were performed to simulate the spectral properties of multilayer stacks with different metal materials and film thickness. The typical four-layer film structure using the transition metal Cr as the thin solar absorbing layer [SiO(2)(90nm)/Cr(10nm)/SiO(2)(80nm)/Al (≥100nm)] was fabricated on the Si or K9 glass substrate by using the magnetron sputtering method. The results indicate that the metal/dielectric film structure has a good spectral selective property suitable for solar thermal applications with solar absorption efficiency higher than 95% in the 400-1200nm wavelength range and a very low thermal emittance in the infrared region. The solar selective absorber with the thin Cr layer has shown a good thermal stability up to the temperature of 873K under vacuum atmosphere. The experimental results are in good agreement with the calculated spectral results.


Assuntos
Cromo/química , Membranas Artificiais , Nanopartículas/química , Energia Solar , Absorção , Cromo/efeitos da radiação , Transferência de Energia , Teste de Materiais , Nanopartículas/efeitos da radiação , Temperatura
9.
Opt Express ; 20(1): A28-38, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22379676

RESUMO

In order to overcome some physical limits, a solar system consisting of five single-junction photocells with four optical filters is studied. The four filters divide the solar spectrum into five spectral regions. Each single-junction photocell with the highest photovoltaic efficiency in a narrower spectral region is chosen to optimally fit into the bandwidth of that spectral region. Under the condition of solar radiation ranging from 2.4 SUN to 3.8 SUN (AM1.5G), the measured peak efficiency under 2.8 SUN radiation reaches about 35.6%, corresponding to an ideal efficiency of about 42.7%, achieved for the photocell system with a perfect diode structure. Based on the detailed-balance model, the calculated theoretical efficiency limit for the system consisting of 5 single-junction photocells can be about 52.9% under 2.8 SUN (AM1.5G) radiation, implying that the ratio of the highest photovoltaic conversion efficiency for the ideal photodiode structure to the theoretical efficiency limit can reach about 80.7%. The results of this work will provide a way to further enhance the photovoltaic conversion efficiency for solar cell systems in future applications.


Assuntos
Desenho Assistido por Computador , Fontes de Energia Elétrica , Filtração/instrumentação , Modelos Teóricos , Energia Solar , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
10.
Opt Express ; 19(14): 12969-77, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21747448

RESUMO

A path-folded infrared image spectrometer with five sub-gratings and five linear-array detectors was applied to a broadband optical monitoring (BOM) system for thin film deposition. Through in situ BOM, we can simultaneously acquire the thickness and refractive index of each layer in real time by fitting the measured spectra, and modify the deposition parameters during deposition process according to the fitting results. An effective data processing method was proposed and applied in the BOM process, and it shortened the data processing time and improved the monitoring efficiency greatly. For demonstration, a narrow band-pass filter (NBF) at 1540 nm with ~10 nm full width at half-maximum (FWHM) had been manufactured using the developed BOM system, and the results showed that this BOM method was satisfying for monitoring deposition of thin film devices.


Assuntos
Manufaturas/efeitos da radiação , Membranas Artificiais , Refratometria/instrumentação , Espectrofotometria Infravermelho/estatística & dados numéricos , Raios Infravermelhos
11.
Sci Rep ; 11(1): 1093, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441851

RESUMO

Unlike the single grating Czerny-Turner configuration spectrometers, a super-high spectral resolution optical spectrometer with zero coma aberration is first experimentally demonstrated by using a compound integrated diffraction grating module consisting of 44 high dispersion sub-gratings and a two-dimensional backside-illuminated charge-coupled device array photodetector. The demonstrated super-high resolution spectrometer gives 0.005 nm (5 pm) spectral resolution in ultra-violet range and 0.01 nm spectral resolution in the visible range, as well as a uniform efficiency of diffraction in a broad 200 nm to 1000 nm wavelength region. Our new zero-off-axis spectrometer configuration has the unique merit that enables it to be used for a wide range of spectral sensing and measurement applications.

12.
Opt Express ; 18(10): 10524-37, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20588905

RESUMO

Under the oblique incidence condition, the multiple reflection of wave packets in a layered film structure will have a lateral shift increasing with the film thickness. In the analysis of the spatial interference with consideration of the lateral shift effect, a set of new analytic formulae to normalize the intensity of the s-and p-polarized wave packet was obtained to reduce the error of the ellipsometry parameters significantly as the optical path difference delta is close to mpi. The principle and method developed in this work also can be applied to other film structures in more general applications.


Assuntos
Membranas Artificiais , Modelos Teóricos , Refratometria/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
13.
Opt Express ; 17(10): 8641-50, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19434197

RESUMO

A new type of ellipsometer using an integrated analyzer composed of 12 sub-analyzers with different azimuth angles was constructed and studied. By using a two-dimensional CCD array camera to measure the light intensity emerging in parallel from each sub-analyzer with the azimuth angles uniformly distributed in the range of about 180 degrees , the ellipsometric parameters were extracted within the data acquisition time less than 1 second. The ellipsometric parameters for the polished bulk Si sample were measured to show good agreement with the results measured by using another two ellipsometric methods. The new method having the merits of high speed and reliability in the optical data measurement can be potentially used in the fields where the in situ data acquisition with high precision is the key issue as required.

14.
Opt Express ; 17(17): 14956-66, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19687974

RESUMO

A new compact infrared spectrometer without any mechanical moving elements has been designed and constructed using a two-dimensional InGaAs array detector and 10 sub-gratings. The instrument is compact, with a double-folded optical path configuration. The spectra are densely 10-folded to achieve 0.07-nm spectral resolution and a 2-ms data acquisition time in the 1450- to 1650-nm wavelength region, making the instrument useful for real-time spectroscopic data analyses in optical communication and many other fields.

15.
Sci Rep ; 9(1): 12434, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455835

RESUMO

In this work, the two-dimensional profile of the light transmission through a prism-like metallic film sample of Au was measured at a wavelength of 632.8 nm in the visible intraband transition region to verify that, beyond the possible mechanisms of overcoming the diffraction limit, a strongly nonuniform optical absorption path length of the light traveling in the metal could induce a lensing effect, thereby narrowing the image of an object. A set of prism-like Au samples with different angles was prepared and experimentally investigated. Due to the nonuniform paths of the light traveling in the Au samples, lens-effect-like phenomena were clearly observed that reduced the imaged size of the beam spot with decreasing light intensity. The experimental measurements presented in the work may provide new insight to better understand the light propagation behavior at a metal/dielectric interface.

16.
Sci Rep ; 9(1): 10211, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308474

RESUMO

Optical spectrometers play a key role in acquiring rich photonic information in both scientific research and a wide variety of applications. In this work, we present a new spectrometer with an ultrahigh resolution of better than 0.012 nm/pixel in the 170-600 nm spectral region using a grating-integrated module that consists of 19 subgratings without any moving parts. By using two-dimensional (2D) backsideilluminated complementary metal-oxide-semiconductor (BSI-CMOS) array detector technology with 2048 × 2048 pixels, a high data acquisition speed of approximately 25 spectra per second is achieved. The physical photon-sensing size of the detector along the one-dimensional wavelength direction is enhanced by a factor of 19 to approximately 428 mm, or 38912 pixels, to satisfy the requirement of seamless connection between two neighboring subspectral regions without any missing wavelengths throughout the entire spectral region. As tested with a mercury lamp, the system has advanced performance capabilities characterized by the highest k parameter reported to date, being approximately 3.58 × 104, where k = (working wavelength region)/(pixel resolution). Data calibration and analysis as well as a method of reducing background noise more efficiently are also discussed. The results presented in this work will stimulate further research on precision spectrometers based on advanced BSI-CMOS array detectors in the future.

17.
Nanoscale Res Lett ; 13(1): 149, 2018 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-29752609

RESUMO

The optical properties of aluminum-doped zinc oxide (AZO) thin films were calculated rapidly and accurately by point-by-point analysis from spectroscopic ellipsometry (SE) data. It was demonstrated that there were two different physical mechanisms, i.e., the interfacial effect and crystallinity, for the thickness-dependent permittivity in the visible and infrared regions. In addition, there was a blue shift for the effective plasma frequency of AZO when the thickness increased, and the effective plasma frequency did not exist for AZO ultrathin films (< 25 nm) in the infrared region, which demonstrated that AZO ultrathin films could not be used as a negative index metamaterial. Based on detailed permittivity research, we designed a near-perfect absorber at 2-5 µm by etching AZO-ZnO alternative layers. The alternative layers matched the phase of reflected light, and the void cylinder arrays extended the high absorption range. Moreover, the AZO absorber demonstrated feasibility and applicability on different substrates.

18.
Sci Rep ; 8(1): 12660, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139954

RESUMO

Optical spectrometers play an important role in modern scientific research. In this work, we present a two-channel spectrometer with a pixel resolution of better than 0.1 nm/pixel in the wavelength range of 200 to 950 nm and an acquisition speed of approximately 25 spectra per second. The spectrometer reaches a high k factor which characterizes the spectral performance of the spectrometer as k = (working wavelength region)/(pixel resolution) = 7500. Instead of using mechanical moving parts in traditional designs, the spectrometer consists of 8 integrated sub-gratings for diffracting and imaging two sets of 4-folded spectra on the upper and lower parts, respectively, of the focal plane of a two-dimensional backside-illuminated complementary metal-oxide-semiconductor (BSI-CMOS) array detector, which shows a high peak quantum efficiency of approximately 90% at 400 nm. In addition to the advantage of being cost-effective, the compact design of the spectrometer makes it advantageous for applications in which it is desirable to use the same two-dimensional array detector to simultaneously measure multiple spectra under precisely the same working conditions to reduce environmental effects. The performance of the finished spectrometer is tested and confirmed with an Hg-Ar lamp.

19.
Opt Express ; 15(4): 1907-12, 2007 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19532429

RESUMO

We report a structure with 4 thin film layers composed of pure metal and dielectric materials and prepared by sputtering. The reflectance and transmittance are lower than 5% with the absorption to be achieved higher than 95% in the 400-1000nm wavelength region as match to the solar radiance spectrum. The thermal emittance of the structure is in the range of 0.063-0.10 through data analysis. The good reproducibility and stability of spectral data associated with the deposition process imply the advantage of the solar energy absorber which is cost-effective in application.

20.
ACS Appl Mater Interfaces ; 9(34): 29295-29301, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28799738

RESUMO

Bismuth selenide (Bi2Se3), with a wide bulk band gap and single massless Dirac cone at the surface, is a promising three-dimensional topological insulator. Bi2Se3 possesses gapless surface states and an insulator-like bulk band gap as a new type of quantum matter. Different Bi2Se3 nanostructures were prepared using electron beam evaporation with high production efficiency. Structural investigations by energy-dispersive X-ray analysis, scanning electron microscopy, and X-ray diffraction revealed the sample stoichiometries and the structural transition mechanism from nanocrystals to nanoflakes. The optical properties systematically probed and analyzed by spectroscopic ellipsometry showed strong dependence on the nanostructures and were also predicted to have structure-modifiable technological prospects. The optical parameters, plasma frequencies, scattering rates of the free electrons, and optical band gaps were related to the topological properties of the Bi2Se3 nanostructures via light-matter interactions, offering new opportunities and approaches for studies on topological insulators and spintronics. The high-quality Bi2Se3 nanostructures provide advantages in exploring novel physics and exploiting prospective applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA