Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 115(4): 1100-1113, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177875

RESUMO

Phyllosphere-associated microbes play a crucial role in plant-pathogen interactions while their composition and diversity are strongly influenced by drought stress. As dioecious plant species exhibited secondary dimorphism between the two sexes in response to drought stress, whether such difference will lead to sex-specific differences in phyllosphere microbiome and associated pathogen resistance between male and female conspecifics is still unknown. In this study, we subjected female and male full siblings of a dioecious poplar species to a short period of drought treatment followed by artificial infection of a leaf pathogenic fungus. Our results showed that male plants grew better than females with or without drought stress. Female control plants had more leaf lesion area than males after pathogen infection, whereas drought stress reversed such a difference. Further correlation and in vitro toxicity tests suggested that drought-mediated sexual differences in pathogen resistance between the two plant sexes could be attributed to the shifts in structure and function of phyllosphere-associated microbiome rather than the amount of leaf main defensive chemicals contained in plant leaves. Supportively, the microbiome analysis through high-throughput sequencing indicated that female phyllosphere enriched a higher abundance of ecologically beneficial microbes that serve as biological plant protectants, while males harbored abundant phytopathogens under drought-stressed conditions. The results could provide potential implications for the selection of suitable poplar sex to plants in drought or semi-drought habitats.


Assuntos
Microbiota , Populus , Secas , Folhas de Planta/fisiologia , Fungos , Populus/genética
2.
Mol Phylogenet Evol ; 190: 107966, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981264

RESUMO

Although numerous studies have been conducted on hybrid speciation, our understanding of this process remains limited. Through an 18-year systematic investigation of all taxa of Populus on the Qinghai-Tibet Plateau, we discovered three new taxa with clear characteristics of sect. Leucoides. Further evidence was gathered from morphology, whole-genome bioinformatics, biogeography, and breeding to demonstrate synthetically that they all originated from distant hybridization between sect. Leucoides and sect. Tacamahaca. P. gonggaensis originated from the hybridization of P. lasiocarpa with P. cathayana, P. butuoensis from the hybridization of P. wilsonii with P. szechuanica, and P. dafengensis from the hybridization of P. lasiocarpa with P. szechuanica. Due to heterosis, the three hybrid taxa possess greater ecological adaptability than their ancestral species. We propose a hybrid speciation process model that incorporates orthogonal, reverse, and backcrossing events. This model can adequately explain some crucial evolutionary concerns, such as the nuclear-cytoplasmic conflict on phylogeny and the extinction of ancestral species within the distribution range of hybrid species.


Assuntos
Populus , Filogenia , Populus/genética , Evolução Biológica , Hibridização Genética , Hibridização de Ácido Nucleico
3.
Mol Phylogenet Evol ; 196: 108072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38615706

RESUMO

While the diversity of species formation is broadly acknowledged, significant debate exists regarding the universal nature of hybrid species formation. Through an 18-year comprehensive study of all Populus species on the Qinghai-Tibet Plateau, 23 previously recorded species and 8 new species were identified. Based on morphological characteristics, these can be classified into three groups: species in section Leucoides, species with large leaves, and species with small leaves in section Tacamahaca. By conducting whole-genome re-sequencing of 150 genotypes from these 31 species, 2.28 million single nucleotide polymorphisms (SNPs) were identified. Phylogenetic analysis utilizing these SNPs not only revealed a highly intricate evolutionary network within the large-leaf species of section Tacamahaca but also confirmed that a new species, P. curviserrata, naturally hybridized with P. cathayana, P. szechuanica, and P. ciliata, resulting in 11 hybrid species. These findings indicate the widespread occurrence of hybrid species formation within this genus, with hybridization serving as a key evolutionary mechanism for Populus on the plateau. A novel hypothesis, "Hybrid Species Exterminating Their Ancestral Species (HSEAS)," is introduced to explain the mechanisms of hybrid species formation at three different scales: the entire plateau, the southeastern mountain region, and individual river valleys.


Assuntos
Especiação Genética , Hibridização Genética , Filogenia , Polimorfismo de Nucleotídeo Único , Populus , Populus/genética , Populus/classificação , Tibet
4.
Ecotoxicol Environ Saf ; 271: 115951, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211512

RESUMO

Both acid and alkaline purple soils in China are increasingly affected by Cd contamination. The selection of fast-growing trees suitable for remediating different soil types is urgent, yet there is a severe lack of relevant knowledge. In this study, we conducted a controlled pot experiment to compare the growth, physiology, and Cd accumulation efficiency of two widely recognized poplar species, namely Populus deltoides and P. × canadensis, under Cd contamination (1 mg kg-1) in acid and alkaline purple soils. The objective was to determine which poplar species is best suited for remediating different soil types. Our findings are as follows: (1) the total biomass of both poplars remained largely unaffected by Cd pollution in both soil types. Notably, under Cd pollution, the total biomass of P. deltoides in acid purple soil was 1.53 times greater than that in alkaline purple soil. (2) Cd pollution did not significantly induce oxidative damage in the leaves of either poplar species in both soil types. However, in acid purple soil, Cd contamination led to a 21% increase in NO3- concentration and a 44% increase in NH4+ concentration in P. × canadensis leaves, whereas in alkaline purple soil, it led to a 59% increase in NH4+ concentration in P. deltoides leaves. (3) Cd concentrations in all root orders of P. × canadensis were significantly higher than those in P. deltoides, especially in the first three root orders, under alkaline purple soil. The total Cd accumulation by P. × canadensis in Cd-polluted alkaline purple soil was 2.18 times higher than that in Cd-polluted acid purple soil, a difference not observed in P. deltoides. (4) redundancy analysis indicated that the sequestration effect of higher soil organic matter on Cd availability in acid purple soil was more pronounced than the release effects caused by lower pH. In conclusion, P. × canadensis is better suited for remediating alkaline purple soil due to its higher capacity for Cd uptake, while P. deltoides is more suitable for remediating Cd-contaminated acid purple soil due to its better growth conditions and greater Cd enrichment capability.


Assuntos
Populus , Poluentes do Solo , Cádmio/análise , Solo , Poluentes do Solo/análise , Biodegradação Ambiental
5.
New Phytol ; 238(5): 1838-1848, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891665

RESUMO

Despite the vital role in carbon (C) sequestration and nutrient retention, variations and patterns in root C and nitrogen (N) stoichiometry of the first five root orders across woody plant species remains unclear. We compiled a dataset to explore variations and patterns of root C and N stoichiometry in the first five orders of 218 woody plant species. Across the five orders, root N concentrations were greater in deciduous, broadleaf, and arbuscular mycorrhizal species than in evergreen, coniferous species, and ectomycorrhizal association species, respectively. Contrasting trends were found for root C : N ratios. Most root branch orders showed clear latitudinal and altitudinal trends in root C and N stoichiometry. There were opposite patterns in N concentrations between latitude and altitude. Such variations were mainly driven by plant species, and climatic factors together. Our results indicate divergent C and N use strategies among plant types and convergence and divergence in the patterns of C and N stoichiometry between latitude and altitude across the first five root orders. These findings provide important data on the root economics spectrum and biogeochemical models to improve understanding and prediction of climate change effects on C and nutrient dynamics in terrestrial ecosystems.


Assuntos
Micorrizas , Traqueófitas , Ecossistema , Madeira , Plantas , Nitrogênio , Raízes de Plantas
6.
J Exp Bot ; 74(6): 2188-2202, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36738293

RESUMO

Microorganisms associated with the phyllosphere play a crucial role in protecting plants from diseases, and their composition and diversity are strongly influenced by heavy metal contaminants. Dioecious plants are known to exhibit sexual dimorphism in metal accumulation and tolerance between male and female individuals. Hence, in this study we used male and female full-siblings of Populus deltoides to investigate whether the two sexes present differences in their phyllosphere microbiome structures and in their associated resistance to the leaf pathogenic fungus Pestalotiopsis microspora after exposure to excess soil cadmium (Cd). We found that Cd-treated male plants grew better and accumulated more leaf Cd than females. Cd stress reduced the lesion areas on leaves of both sexes after pathogen infection, but male plants exhibited better resistance than females. More importantly, Cd exposure differentially altered the structure and function of the phyllosphere microbiomes between the male and female plants, with more abundant ecologically beneficial microbes and decreased pathogenic fungal taxa harbored by male plants. In vitro toxicity tests suggested that the sexual difference in pathogen resistance could be attribute to both direct Cd toxicity and indirect shifts in the phyllosphere microbiome. This study provides new information relevant for understanding the underlying mechanisms of the effects of heavy metals involved in plant-pathogen interactions.


Assuntos
Metais Pesados , Microbiota , Populus , Cádmio/toxicidade , Solo , Fungos
7.
Pacing Clin Electrophysiol ; 46(9): 1035-1048, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573146

RESUMO

Transcatheter radiofrequency ablation has been widely introduced for the treatment of tachyarrhythmias. The demand for catheter ablation continues to grow rapidly as the level of recommendation for catheter ablation. Traditional catheter ablation is performed under the guidance of X-rays. X-rays can help display the heart contour and catheter position, but the radiobiological effects caused by ionizing radiation and the occupational injuries worn caused by medical staff wearing heavy protective equipment cannot be ignored. Three-dimensional mapping system and intracardiac echocardiography can provide detailed anatomical and electrical information during cardiac electrophysiological study and ablation procedure, and can also greatly reduce or avoid the use of X-rays. In recent years, fluoroless catheter ablation technique has been well demonstrated for most arrhythmic diseases. Several centers have reported performing procedures in a purposefully designed fluoroless electrophysiology catheterization laboratory (EP Lab) without fixed digital subtraction angiography equipment. In view of the lack of relevant standardized configurations and operating procedures, this expert task force has written this consensus statement in combination with relevant research and experience from China and abroad, with the aim of providing guidance for hospitals (institutions) and physicians intending to build a fluoroless cardiac EP Lab, implement relevant technologies, promote the standardized construction of the fluoroless cardiac EP Lab.


Assuntos
Ablação por Cateter , Técnicas Eletrofisiológicas Cardíacas , Cirurgia Assistida por Computador , Humanos , Eletrofisiologia Cardíaca , Ablação por Cateter/métodos , Técnicas Eletrofisiológicas Cardíacas/métodos , Cirurgia Assistida por Computador/métodos , Resultado do Tratamento
8.
Molecules ; 28(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37894523

RESUMO

Nanmu (Phoebe zhennan) has a unique fragrance and is a high-quality tree species for forest conservation. The types and contents of volatile compounds in different tissues of nanmu wood are different, and the study of its volatile metabolites can help us to understand the source of its fragrance and functions. In order to explore the metabolites related to the wood fragrance of nanmu and to find out the unique volatile substances in the heartwood, gas chromatography-mass spectrometry (GC-MS) was performed to analyze the non-targeted metabolomics in five radial tissues from the sapwood to the heartwood of nanmu. A total of 53 volatile metabolites belonging to 11 classes were detected in all tissues, including terpenes, aromatic hydrocarbons, organoheterocyclics, phenols, esters, organic acids, alcohols, alkaloids, alkane, indoles derivatives, and others. And most of the volatile metabolites were identified for the first time in nanmu wood. Among them, terpenes and aromatic hydrocarbons were the main volatile components. In addition, 22 differential metabolites were screened from HW and SW, HW, and TZ via metabolomic analysis. Among these DAMs, three volatile metabolites (cadinene, a sesquiterpenoid; p-cymene, a monoterpenoid; 1,3,5-triisopropylbenzene, an aromatic hydrocarbon) contributed heavily to the characteristic fragrance of the heartwood. Additionally, the expression of transcripts showed that the unigenes in the terpenoid biosynthesis pathway were especially up-regulated in the SW. Therefore, we speculated that fragrance-related metabolites were synthesized in SW and then deposited in heartwood during sapwood transformed to heartwood. The expression levels of transcription factors (e.g., WRKY, C2H2, NAC) acted as the major regulatory factors in the synthesis of terpenoid. The results lay the foundations for further studies on the formation mechanism of fragrance components in nanmu wood and also provide a reference for the further development and utilization of nanmu wood.


Assuntos
Hidrocarbonetos Aromáticos , Madeira , Madeira/química , Odorantes , Perfilação da Expressão Gênica , Terpenos/análise , Metabolômica
9.
Ecotoxicol Environ Saf ; 239: 113630, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569299

RESUMO

Cadmium (Cd) pollution has detrimental effects on the ecological environment and human health. Currently, phytoremediation is considered an environmentally friendly way to remediate Cd pollution. The application of transgenic plants to remediate soil pollution is a new technology that has emerged in recent years. In this study, PyWRKY75 was isolated and cloned from Populus yunnanensis, and the functionality of PyWRKY75 in woody plants (poplar) under Cd stress was verified. The increase in plant height of the OE-41 line (overexpression poplar) was 33.2% higher than that of the wild type (WT). Moreover, PyWRKY75 significantly promoted the absorption and accumulation of Cd in poplar, which increased by 51.32% in the OE-41 line when compared with the WT. The chlorophyll content of transgenic poplar leaves was higher than that of the WT, which reflected a protective mechanism of PyWRKY75. Other antioxidants, such as POD, SOD, CAT, APX, AsA, GSH and PCs, also made the transgenic poplars more tolerant to Cd, and they behaved differently in roots, stems and leaves. In general, PyWRKY75 played a potential role in regulating plant tolerance to Cd stress. This study provides a scientific basis and a new type of modified poplar for Cd pollution remediation.


Assuntos
Populus , Poluentes do Solo , Fatores de Transcrição , Cádmio/toxicidade , Folhas de Planta , Raízes de Plantas/genética , Populus/genética , Poluentes do Solo/toxicidade , Fatores de Transcrição/genética
10.
Chem Biodivers ; 19(7): e202200538, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35773242

RESUMO

Two new (cladosporioles A and B, 1 and 2) and fourteen known (3-16) compounds were isolated from the deep-sea-derived fungus Cladosporium cladosporioides 170056. The relative structures of the new compounds were elucidated mainly by detailed analysis of their NMR and HR-ESI-MS spectroscopic data. Their absolute configurations were determined by comparison of the experimental and calculated electronic circular dichroism (ECD) spectra. All isolates were tested for antimicrobial activity against Vibrio parahaemolyticus. Compound 15 exhibited weak effect with the MIC value of 156.25 µg/mL.


Assuntos
Cladosporium , Fungos , Dicroísmo Circular , Cladosporium/química , Fungos/química , Indóis , Estrutura Molecular
11.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36430522

RESUMO

Phoebe hui is an extremely valuable tree that is the main source of the fragrant golden-thread nanmu wood. Although the fragrance of wood has been investigated in several trees, the potential substances and gene regulation mechanisms that are involved in fragrance formation are poorly understood. Here, three radial tissues, sapwood (SW), heartwood (HW), and the transition zone (TZ) in between them, were compared via integrative physiological, volatile-metabolomic, and transcriptomic analyses to identify the key metabolites and regulatory mechanisms involved in fragrance formation. During heartwood formation, gradual starch grain loss was accompanied by the deposition of lipids and extractives in the cell lumen. Extracts of terpenoids were synthesized and accumulated in the heartwood, including monoterpenoids (limonene and p-cymene) and sesquiterpenes (cubebene and guaiadiene); these were identified as being closely related to the special fragrance of the wood. Additionally, the expression of transcripts showed that the genes related to primary metabolism were specifically upregulated in the SW, whereas genes annotated in terpenoid biosynthesis were specifically upregulated in the HW. Therefore, we speculated that terpenoid biosynthesis occurs in situ in the HW via the HW formation model of Type-III (Santalum) using the precursors that were produced by primary metabolism in the SW. The expression levels of transcription factors (e.g., MYB, WRKY, and C2H2) acted as the major regulatory factors in the synthesis of terpenoids. Our results explain the special fragrance in P. hui and broaden the current knowledge of the regulatory mechanisms of fragrance formation. This work provides a framework for future research that is focused on improving wood quality and value.


Assuntos
Lauraceae , Perfumes , Santalum , Transcriptoma , Odorantes , Metabolômica , Santalum/genética , Perfumes/metabolismo , Lauraceae/genética , Terpenos/metabolismo , Árvores/genética
12.
Int J Mol Sci ; 23(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36362363

RESUMO

Nanmu (Phoebe zhennan) is an extremely valuable tree plant that is the main source of famous "golden-thread nanmu" wood. The potential metabolites and gene regulation mechanisms involved in golden thread formation are poorly understood, even though the color change from sapwood to heartwood has been investigated in several tree plants. Here, five radial tissues from sapwood to heartwood were compared via integrative metabolomic and transcriptomic analysis to reveal the secondary metabolites and molecular mechanisms involved in golden thread formation. During heartwood formation, gradual starch grain loss is accompanied by the cell lumen deposition of lipids and color-related extractives. Extractives of 20 phenylpropanoids accumulated in heartwood, including cinnamic acids and derivatives, coumarin acid derivatives, and flavonoids, which were identified as being closely related to the golden thread. Phenylpropanoids co-occurring with abundant accumulated metabolites of prenol lipids, fatty acyls, steroids, and steroid derivatives may greatly contribute to the characteristics of golden thread formation. Additionally, the expression of nine genes whose products catalyze phenylpropanoid and flavonoids biosynthesis was upregulated in the transition zone, then accumulated and used to color the heartwood. The expression levels of transcription factors (e.g., MYB, bHLH, and WRKY) that act as the major regulatory factors in the synthesis and deposition of phenylpropanoid and flavonoids responsible for golden thread formation were also higher than in sapwood. Our results not only explain golden thread formation in nanmu, but also broaden current knowledge of special wood color formation mechanisms. This work provides a framework for future research focused on improving wood color.


Assuntos
Lauraceae , Transcriptoma , Madeira/química , Perfilação da Expressão Gênica , Árvores/genética , Flavonoides/metabolismo , Lauraceae/genética
13.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613496

RESUMO

The phenomenon of cross adaptation refers to the ability of plants to improve their resistance to other stress after experiencing one type of stress. However, there are limited reports on how ultraviolet radiation B (UVB) pretreatment affects the enrichment, transport, and tolerance of cadmium (Cd) in plants. Since an appropriate UVB pretreatment has been reported to change plant tolerance to stress, we hypothesized that this application could alter plant uptake and tolerance to heavy metals. In this study, a woody plant species, 84K poplar (Populus alba × Populus glandulosa), was pretreated with UVB and then subjected to Cd treatment. The RT-qPCR results indicated that the UVB-treated plants could affect the expression of Cd uptake, transport, and detoxification-related genes in plants, and that the UVB-Pretreatment induced the ability of Cd absorption in plants, which significantly enriched Cd accumulation in several plant organs, especially in the leaves and roots. The above results showed that the UVB-Pretreatment further increased the toxicity of Cd to plants in UVB-Cd group, which was shown as increased leaf malonaldehyde (MDA) and hydrogen peroxide (H2O2) content, as well as downregulated activities of antioxidant enzymes such as Superoxide Dismutase (SOD), Catalase (CAT), and Ascorbate peroxidase (APX). Therefore, poplar plants in the UVB-Cd group presented a decreased photosynthesis and leaf chlorosis. In summary, the UVB treatment improved the Cd accumulation ability of poplar plants, which could provide some guidance for the potential application of forest trees in the phytoremediation of heavy metals in the future.


Assuntos
Cádmio , Populus , Cádmio/metabolismo , Populus/genética , Populus/metabolismo , Peróxido de Hidrogênio/metabolismo , Raios Ultravioleta , Antioxidantes/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Estresse Oxidativo
14.
BMC Genomics ; 22(1): 731, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625025

RESUMO

BACKGROUND: Trees such as Populus are planted extensively for reforestation and afforestation. However, their successful establishment greatly depends upon ambient environmental conditions and their relative resistance to abiotic and biotic stresses. Polyphenol oxidase (PPO) is a ubiquitous metalloproteinase in plants, which plays crucial roles in mediating plant resistance against biotic and abiotic stresses. Although the whole genome sequence of Populus trichocarpa has long been published, little is known about the PPO genes in Populus, especially those related to drought stress, mechanical damage, and insect feeding. Additionally, there is a paucity of information regarding hormonal responses at the whole genome level. RESULTS: A genome-wide analysis of the poplar PPO family was performed in the present study, and 18 PtrPPO genes were identified. Bioinformatics and qRT-PCR were then used to analyze the gene structure, phylogeny, chromosomal localization, gene replication, cis-elements, and expression patterns of PtrPPOs. Sequence analysis revealed that two-thirds of the PtrPPO genes lacked intronic sequences. Phylogenetic analysis showed that all PPO genes were categorized into 11 groups, and woody plants harbored many PPO genes. Eighteen PtrPPO genes were disproportionally localized on 19 chromosomes, and 3 pairs of segmented replication genes and 4 tandem repeat genomes were detected in poplars. Cis-acting element analysis identified numerous growth and developmental elements, secondary metabolism processes, and stress-related elements in the promoters of different PPO members. Furthermore, PtrPPO genes were expressed preferentially in the tissues and fruits of young plants. In addition, the expression of some PtrPPOs could be significantly induced by polyethylene glycol, abscisic acid, and methyl jasmonate, thereby revealing their potential role in regulating the stress response. Currently, we identified potential upstream TFs of PtrPPOs using bioinformatics. CONCLUSIONS: Comprehensive analysis is helpful for selecting candidate PPO genes for follow-up studies on biological function, and progress in understanding the molecular genetic basis of stress resistance in forest trees might lead to the development of genetic resources.


Assuntos
Catecol Oxidase , Proteínas de Plantas/genética , Populus , Catecol Oxidase/genética , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Populus/enzimologia , Populus/genética , Estresse Fisiológico
15.
Ecotoxicol Environ Saf ; 208: 111688, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396020

RESUMO

Elemental defense hypothesis suggests that toxic metals accumulated in plant tissues could enhance plant defense against herbivores and pathogens. Since over-accumulation of metals in plant organs will pose negative effects on plant health, it is necessary to find a way to alleviate metal-induced toxicity in plants while keeping or even improving plant resistance. Exogenous nitrogen (N) application was reported to have such alleviation effect while stimulating metal accumulation in plant tissues. In this study, we examined whether soil N addition in three different doses to a poplar species under cadmium (Cd) stress can simultaneously improve plant growth and resistance to four herbivorous insects and a leaf pathogen. The results showed that N application to Cd-amended soil prominently enhanced plant growth and leaf Cd accumulation. While N addition in three doses all remarkably reduced herbivore growth than control plants, only the highest N dose exerted stronger inhibition than the sole Cd-treated plants. In the paired-choice experiment, plants supplied with the highest N dose showed an enhanced deterrent effect on herbivore preference than plants exposed to sole Cd. Furthermore, plant resistance to the leaf pathogen infection was strongly enhanced as the levels of N addition increased. Leaf sugar and three main defensive chemicals were not affected by N application implied that such enhanced effect of N on plant resistance was due to increased leaf Cd accumulation. Our results suggested that the application of exogenous N over a certain amount could enhance the resistance of Cd-treated plants to leaf herbivory and pathogen infection.


Assuntos
Cádmio/toxicidade , Nitrogênio/farmacologia , Folhas de Planta/efeitos dos fármacos , Populus/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Cádmio/metabolismo , Herbivoria/efeitos dos fármacos , Lepidópteros/efeitos dos fármacos , Pestalotiopsis/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Populus/crescimento & desenvolvimento , Populus/microbiologia , Solo/química , Poluentes do Solo/metabolismo
16.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925110

RESUMO

Poplar are planted extensively in reforestation and afforestation. However, their successful establishment largely depends on the environmental conditions of the newly established plantation and their resistance to abiotic as well as biotic stresses. NF-X1, a widespread transcription factor in plants, plays an irreplaceable role in plant growth, development, and stress tolerance. Although the whole genome sequence of Populus trichocarpa has been published for a long time, little is known about the NF-X1 genes in poplar, especially those related to drought stress, mechanical damage, insect feeding, and hormone response at the whole genome level. In this study, whole genome analysis of the poplar NF-X1 family was performed, and 4 PtrNF-X1 genes were identified. Then, bioinformatics analysis and qRT-PCR were applied to analyze the gene structure, phylogeny, chromosomal localization, gene replication, Cis-elements, and expression patterns of PtrNF-X1genes. Sequence analysis revealed that one-quarter of the PtrNF-X1 genes did not contain introns. Phylogenetic analysis revealed that all NF-X1 genes were split into three subfamilies. The number of two pairs of segmented replication genes were detected in poplars. Cis-acting element analysis identified a large number of elements of growth and development and stress-related elements on the promoters of different NF-X1 members. In addition, some PtrNF-X1 could be significantly induced by polyethylene glycol (PEG) and abscisic acid (ABA), thus revealing their potential role in regulating stress response. Comprehensive analysis is helpful in selecting candidate NF-X1 genes for the follow-up study of the biological function, and molecular genetic progress of stress resistance in forest trees provides genetic resources.


Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Populus/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Cromossomos de Plantas/genética , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Oryza/genética , Filogenia , Populus/crescimento & desenvolvimento , Especificidade da Espécie , Estresse Fisiológico/genética , Sintenia
17.
J Environ Manage ; 288: 112467, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823455

RESUMO

Elemental defense hypothesis (EDH) proposed that metal accumulation in plants could increase plant resistance to herbivores. However, the over-accumulation of metals in low-accumulators such as woody plants will cause adverse effects on plant health. Thus, the application of EDH on low-accumulators in metal contaminated areas is strongly limited. Since the supplement of exogenous spermidine (Spd) was reported to alleviate metal-induced toxicity in plants while stimulating metal accumulation in plant tissues, we hypothesized that such application will further improve plant resistance to herbivores. In this study, we employed a woody plant species, Populus yunnanensis, to test this hypothesis. We first tested a Spd concentration series applied on plants subjected to soil cadmium (Cd) stress and found that the 1 mM Spd strongly promoted plant growth while stimulated Cd accumulation in plant leaves and roots. We further conducted herbivore bioassays to test the growth performance and feeding preference of two leaf herbivore species and a root herbivore species that fed on plants from different treatments. The results showed that the inhibition effect of Cd stressed-plants on herbivore growth was significantly magnified by the addition of Spd. The growth weight of all the three tested herbivores were negatively correlated with increased Cd concentrations in plant tissues. In addition, the feeding preferences of the two leaf herbivore species were strongly repelled by leaf discs from Cd-treated plants with Spd supplement. The results suggested that the application of exogenous Spd at a certain dose could enhance elemental defense of plants against herbivory.


Assuntos
Cádmio , Populus , Cádmio/toxicidade , Herbivoria , Folhas de Planta , Solo , Espermidina
18.
Can J Physiol Pharmacol ; 98(11): 826-833, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32311288

RESUMO

Galectin-3 is a member of the ß-galactoside-binding lectin family taking part in the regulation of inflammation, angiogenesis, and fibrosis. This study was designed to study the improved effect of galectin-3 inhibition on diabetic cardiomyopathy (DCM). Sprague-Dawley rats were randomized into the control, DCM, and DCM + modified citrus pectin (MCP) (a galectin-3 pharmacological inhibitor) groups. After 8 weeks, streptozotocin-induced DCM led to high blood glucose level, oxidative stress, cardiac injury, and dysfunction accompanied by suppressed body mass. On the contrary, MCP (100 mg·kg-1·day-1) administration improved body mass and blood glucose level and attenuated cardiac injury and dysfunction in DCM rats. Additionally, MCP attenuated pathological changes in plasma and myocardial tissue markers of oxidative stress, such as hydrogen peroxide and malonyldialdehyde, although it did not change superoxide dismutase activities, which were decreased in the DCM group. The levels of oxidative stress associated proteins evaluated by Western blot, such as p67phox and NADPH oxidase 4, were obviously increased in the DCM group, while they were reversed by MCP treatment. Therefore, galectin-3-mediated high-glucose-induced cardiomyocyte injury and galectin-3 inhibition attenuated DCM by suppressing NADPH oxidase. These findings suggested that galectin-3 could be a potential target for treatment of patients with DCM.


Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/patologia , Galectina 3/metabolismo , Miocárdio/patologia , NADPH Oxidase 4/metabolismo , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Cardiomiopatias Diabéticas/sangue , Cardiomiopatias Diabéticas/etiologia , Galectina 3/antagonistas & inibidores , Humanos , Masculino , Miocárdio/citologia , Miócitos Cardíacos/patologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina/administração & dosagem , Estreptozocina/toxicidade
19.
Ecotoxicol Environ Saf ; 195: 110437, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193020

RESUMO

More research about branch order-specific accumulation of toxic ions in root systems is needed to know root branch-related responses in growth and physiology. In this study, we used Populus deltoides females and males as a model to detect sex-specific differences in physiology, biochemistry, ultrastructure of absorbing roots and distribution of toxic ions in heterogeneous root systems under Cd, salinity and combined stress. Healthy annual male and female plants of P. deltoides were cultivated in soils including 5 mg kg-1 of Cd, 0.2% (w/w) of NaCl and their combination for a growth season. Our results are mainly as follows: (1) females suffered more growth inhibition, root biomass decline, root viability depression, and damage to distal root cells, but lower ability to scavenge reactive oxygen species (ROS) than the males under all stresses; (2) In both sexes, salinity adopted in the present study caused more significant negative effects on growth and organelles integrity than Cd stress, while interaction treatment did not induced a further depression in growth or more impairments in root cells of both sexes in comparison to salinity, indicating influence of combined stress was not equal simply to a superposition of the effects caused by single factors; (3) Cd and Na accumulation in root systems is highly heterogeneous and branch order-specific, with lower-order roots containing more Cd2+ but less Na+, and higher-order roots accumulating more Na+ but less Cd2+. Besides, it is noteworthy that females accumulated more Cd2+ in 1-2 order roots and more Na+ in 1-3 order roots than males under the interaction treatment. These results indicated that strategies in toxic ions accumulation in heterogeneous root systems of P. deltoides was highly branch order-specific, and may closely correlate with sex-specific root growth and physiological responses to the interaction of Cd and salinity.


Assuntos
Cádmio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Populus/efeitos dos fármacos , Cloreto de Sódio/toxicidade , Poluentes do Solo/toxicidade , Biomassa , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Populus/crescimento & desenvolvimento , Populus/fisiologia , Salinidade , Sexo , Solo
20.
J Cell Biochem ; 120(3): 3813-3821, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30259997

RESUMO

Myocardial ischemia-reperfusion (I/R) injury is thought to have its detrimental role in coronary heart disease (CHD), which is considered as the foremost cause of death all over the world. However, molecular mechanism in the progression of myocardial I/R injury is still unclear. The goal of this study was to investigate the expression and function of microRNA-140 (miR-140) in the process of myocardial I/R injury. The miR-140 expression level was analyzed in the myocardium with I/R injury and control myocardium using quantitative real-time polymerase chain reaction. Then the relation between the level of miR-140 and YES proto-oncogene 1 (YES1) was also investigated via luciferase reporter assay. Assessment of myocardial infarct size measurement of serum myocardial enzymes and electron microscopy analysis were used for analyzing the effect of miR-140 on myocardial I/R injury. We also used Western blot analysis to examine the expression levels of the mitochondrial fission-related proteins, Drp1 and Fis1. miR-140 is downregulated, and YES1 is upregulated after myocardial I/R injury. Overexpression of miR-140 could reduce the increase related to myocardial I/R injury in infarct size and myocardial enzymes, and it also could inhibit the expression of proteins related to mitochondrial morphology and myocardial I/R-induced mitochondrial apoptosis by targeting YES1. Taken together, these findings may provide a novel insight into the molecular mechanism of miR-140 and YES1 in the progression of myocardial I/R injury. MiR-140 might become a promising therapeutic target for treating myocardial I/R injury.


Assuntos
Apoptose/genética , MicroRNAs/genética , Mitocôndrias/genética , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Proteínas Proto-Oncogênicas c-yes/genética , Animais , Antagomirs/genética , Antagomirs/metabolismo , Modelos Animais de Doenças , Dinaminas/genética , Dinaminas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Camundongos , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Proteínas Proto-Oncogênicas c-yes/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA