Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Small ; : e2400498, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863125

RESUMO

Sodium-ion battery (SIB) is a candidate for the stationary energy storage systems because of the low cost and high abundance of sodium. However, the energy density and lifespan of SIBs suffer severely from the irreversible consumption of the Na-ions for the formation of the solid electrolyte interphase (SEI) layer and other side reactions on the electrodes. Here, Na3.5C6O6 is proposed as an air-stable high-efficiency sacrificial additive in the cathode to compensate for the lost sodium. It is characteristic of low desodiation (oxidation) potential (3.4-3.6 V vs. Na+/Na) and high irreversible desodiation capacity (theoretically 378 mAh g-1). The feasibility of using Na3.5C6O6 as a sodium compensation additive is verified with the improved electrochemical performances of a Na2/3Ni1/3Mn1/3Ti1/3O2ǀǀhard carbon cells and cells using other cathode materials. In addition, the structure of Na3.5C6O6 and its desodiation path are also clarified on the basis of comprehensive physical characterizations and the density functional theory (DFT) calculations. This additive decomposes completely to supply abundant Na ions during the initial charge without leaving any electrochemically inert species in the cathode. Its decomposition product C6O6 enters the carbonate electrolyte without bringing any detectable negative effects. These findings open a new avenue for elevating the energy density and/or prolonging the lifetime of the high-energy-density secondary batteries.

2.
Front Cell Infect Microbiol ; 14: 1392376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903943

RESUMO

Background: The gut microbiota plays a vital role in the development of sepsis and in protecting against pneumonia. Previous studies have demonstrated the existence of the gut-lung axis and the interaction between the gut and the lung, which is related to the prognosis of critically ill patients; however, most of these studies focused on chronic lung diseases and influenza virus infections. The purpose of this study was to investigate the effect of faecal microbiota transplantation (FMT) on Klebsiella pneumoniae-related pulmonary infection via the gut-lung axis and to compare the effects of FMT with those of traditional antibiotics to identify new therapeutic strategies. Methods: We divided the mice into six groups: the blank control (PBS), pneumonia-derived sepsis (KP), pneumonia-derived sepsis + antibiotic (KP + PIP), pneumonia-derived sepsis + faecal microbiota transplantation(KP + FMT), antibiotic treatment control (KP+PIP+PBS), and pneumonia-derived sepsis+ antibiotic + faecal microbiota transplantation (KP + PIP + FMT) groups to compare the survival of mice, lung injury, inflammation response, airway barrier function and the intestinal flora, metabolites and drug resistance genes in each group. Results: Alterations in specific intestinal flora can occur in the gut of patients with pneumonia-derived sepsis caused by Klebsiella pneumoniae. Compared with those in the faecal microbiota transplantation group, the antibiotic treatment group had lower levels of proinflammatory factors and higher levels of anti-inflammatory factors but less amelioration of lung pathology and improvement of airway epithelial barrier function. Additionally, the increase in opportunistic pathogens and drug resistance-related genes in the gut of mice was accompanied by decreased production of favourable fatty acids such as acetic acid, propionic acid, butyric acid, decanoic acid, and secondary bile acids such as chenodeoxycholic acid 3-sulfate, isodeoxycholic acid, taurodeoxycholic acid, and 3-dehydrocholic acid; the levels of these metabolites were restored by faecal microbiota transplantation. Faecal microbiota transplantation after antibiotic treatment can gradually ameliorate gut microbiota disorder caused by antibiotic treatment and reduce the number of drug resistance genes induced by antibiotics. Conclusion: In contrast to direct antibiotic treatment, faecal microbiota transplantation improves the prognosis of mice with pneumonia-derived sepsis caused by Klebsiella pneumoniae by improving the structure of the intestinal flora and increasing the level of beneficial metabolites, fatty acids and secondary bile acids, thereby reducing systemic inflammation, repairing the barrier function of alveolar epithelial cells, and alleviating pathological damage to the lungs. The combination of antibiotics with faecal microbiota transplantation significantly alleviates intestinal microbiota disorder, reduces the selection for drug resistance genes caused by antibiotics, and mitigates lung lesions; these effects are superior to those following antibiotic monotherapy.


Assuntos
Antibacterianos , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Infecções por Klebsiella , Klebsiella pneumoniae , Pulmão , Sepse , Animais , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/terapia , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pulmão/microbiologia , Pulmão/patologia , Sepse/microbiologia , Sepse/terapia , Prognóstico , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL
3.
ACS Biomater Sci Eng ; 10(5): 3136-3147, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38663028

RESUMO

Treatment with immune checkpoint inhibitors (ICIs) has shown efficacy in some patients with Lynch syndrome-associated colon cancer, but some patients still do not benefit from it. In this study, we adopted a combination strategy of tumor vaccines and ICIs to maximize the benefits of immunotherapy. Here, we obtained tumor-antigen-containing cell lysate (TCL) by lysing MC38Mlh1 KD cells and prepared liposome nanoparticles (Lipo-PEG) with a typical spherical morphology by thin-film hydration. Anti-PD-L1 was coupled to the liposome surface by the amidation reaction. As observed, anti-PD-L1/TCL@Lipo-PEG was not significantly toxic to mouse intestinal epithelial cells (MODE-K) in the safe concentration range and did not cause hemolysis of mouse red blood cells. In addition, anti-PD-L1/TCL@Lipo-PEG reduced immune escape from colon cancer cells (MC38Mlh1 KD) by the anti-PD-L1 antibody, restored the killing function of CD8+ T cells, and targeted more tumor antigens to bone marrow-derived dendritic cells (BMDCs), which also expressed PD-L1, to stimulate BMDC antigen presentation. In syngeneic transplanted Lynch syndrome-associated colon cancer mice, the combination of anti-PD-L1 and TCL provided better cancer suppression than monoimmunotherapy, and the cancer suppression effect of anti-PD-L1/TCL@Lipo-PEG treatment was even better than that of the free drug. Meanwhile anti-PD-L1/TCL@Lipo-PEG enhanced the immunosuppressive tumor microenvironment. In vivo fluorescence imaging and H&E staining showed that the nanomedicine was mainly retained in the tumor site and had no significant toxic side effects on other major organs. The anti-PD-L1/TCL@Lipo-PEG prepared in this study has high efficacy and good biosafety in alleviating the progression of Lynch syndrome-associated colon cancer, and it is expected to be a therapeutic candidate for Lynch syndrome-associated colon cancer.


Assuntos
Antígeno B7-H1 , Neoplasias do Colo , Neoplasias Colorretais Hereditárias sem Polipose , Lipossomos , Animais , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Neoplasias do Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Camundongos , Antígeno B7-H1/metabolismo , Nanomedicina , Linhagem Celular Tumoral , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/imunologia , Humanos , Camundongos Endogâmicos C57BL , Feminino , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Nanopartículas/química , Nanopartículas/uso terapêutico , Progressão da Doença , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígenos de Neoplasias/imunologia
4.
ACS Appl Mater Interfaces ; 16(15): 18867-18873, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588445

RESUMO

Lithium metal batteries (LMBs) have been regarded as one of the most promising next-generation high-energy-density storage devices. However, uncontrolled lithium dendrite growth leads to low Coulombic efficiencies and severe safety issues, hindering the commercialization of LMBs. Reducing the diffusion barrier of lithium is beneficial for uniform lithium deposition. Herein, a composite is constructed with Li4Ti5O12 as the skeleton of metallic lithium (Li@LixTi5O12) because Li4Ti5O12 is a "zero-strain" material and exhibits a low lithium diffusion barrier. It was found that the symmetric cells of Li@LixTi5O12 can stably cycle for over 400 h at 1 mA cm-2 in the carbonate electrolyte, significantly exceeding the usual lifespan (∼170 h) of the symmetric cell using a lithium metal electrode. In a full cell with Li@LixTi5O12 as the anode, the cathode LiFePO4 delivers a capacity retention of 78.2% after 550 cycles at 3.6C rate and an N/P ratio = 8.0. This study provides new insights for designing a practical lithium anode.

5.
Nat Commun ; 15(1): 3706, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698026

RESUMO

Electrochemical-mechanical coupling poses enormous challenges to the interfacial and structural stability but create new opportunities to design innovative all-solid-state batteries from scratch. Relying on the solid-solid constraint in the space-limited domain structure, we propose to exploit the lithiation-induced stress to drive the active materials creep, thereby improving the structural integrity. For demonstration, we fabricate the creep-type all-solid-state cathode using creepable Se material and an all-in-one rigid ionic/electronic conducting Mo6Se8 framework. As indicated by the in-situ experiment and numerical simulation, this cathode presents unique capabilities in improving interparticle contact and avoiding particle fracture, leading to its superior electrochemical performance, including a superior long-cycle life of more than 3000 cycles at 0.5 C and a high volumetric energy density of 2460 Wh/L at the cathode level. We believe this innovative strategy to utilize mechanics to boost the electrochemical performance could shed light on the future design of all-solid-state batteries for practical applications.

6.
ACS Nano ; 18(10): 7334-7345, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38421637

RESUMO

All-solid-state batteries (ASSBs) working at room and mild temperature have demonstrated inspiring performances over recent years. However, the kinetic attributes of the interface applicable to the subzero temperatures are still unidentified, restricting the low-temperature interface design and operation. Herein, a host of cathode interfaces are constructed and investigated to unlock the critical interface features required for cryogenic temperatures. The unstable interface between LiNi0.90Co0.05Mn0.05O2 (Ni90) and Li6PS5Cl (LPSC) sulfide solid electrolyte (SE) results in unfavorable cathode-electrolyte interphase (CEI) and sluggish lithium-ion transport across the CEI. After inserting a Li2ZrO3 (LZO) coating layer, the activation energy of the Ni90@LZO/sulfide SE interface can be reduced from 60.19 kJ mol-1 to 41.39 kJ mol-1 owing to the suppressed interfacial reactions. Through replacing the LPSC SE and LZO coating layer by the Li3InCl6 (LIC) halide SE, both a highly stable interface and low activation energy (25.79 kJ mol-1) can be achieved, thus realizing an improved capacity retention (26.9%) at -30 °C for the Ni90/LIC/LPSC/Li-In ASSB. Moreover, theoretical evaluation clarifies that cathode/SE interfaces with high ionic conductivity and low energy barrier are favorable to the Li+ conduction through the interphase and the Li+ transfer across the cathode/interphase interface. These critical understandings may provide guidance for low-temperature interface design in ASSBs.

7.
ACS Nano ; 18(26): 16842-16852, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38912721

RESUMO

The accelerated formation of lithium dendrites has considerably impeded the advancement and practical deployment of all-solid-state lithium metal batteries (ASSLMBs). In this study, a soft carbon (SC)-Li3N interface layer was developed with both ionic and electronic conductivity, for which the in situ lithiation reaction not only lithiated SC into LiC6 with good electronic/ionic conductivity but also successfully transformed the mixed-phase Li3N into pure-phase ß-Li3N with a high ionic conductivity/ion diffusion coefficient and stability to lithium metal. The mixed conductive interface layer facilitates fast Li+ transport at the interface and induces the homogeneous deposition of lithium metal inside it. This effectively inhibits the formation of lithium dendrites and greatly improves the performance of the ASSLMB. The ASSLMB assembled with the SC-Li3N interface layer exhibits high areal capacity (15 mA h cm-2), high current density (7.5 mA cm-2), and long cycle life (6000 cycles). These results indicate that this interface layer has great potential for practical applications in high-energy-density ASSLMBs.

8.
J Imaging Inform Med ; 37(4): 1312-1322, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38448758

RESUMO

We aimed to develop and validate multimodal ICU patient prognosis models that combine clinical parameters data and chest X-ray (CXR) images. A total of 3798 subjects with clinical parameters and CXR images were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and an external hospital (the test set). The primary outcome was 30-day mortality after ICU admission. Automated machine learning (AutoML) and convolutional neural networks (CNNs) were used to construct single-modal models based on clinical parameters and CXR separately. An early fusion approach was used to integrate both modalities (clinical parameters and CXR) into a multimodal model named PrismICU. Compared to the single-modal models, i.e., the clinical parameter model (AUC = 0.80, F1-score = 0.43) and the CXR model (AUC = 0.76, F1-score = 0.45) and the scoring system APACHE II (AUC = 0.83, F1-score = 0.77), PrismICU (AUC = 0.95, F1 score = 0.95) showed improved performance in predicting the 30-day mortality in the validation set. In the test set, PrismICU (AUC = 0.82, F1-score = 0.61) was also better than the clinical parameters model (AUC = 0.72, F1-score = 0.50), CXR model (AUC = 0.71, F1-score = 0.36), and APACHE II (AUC = 0.62, F1-score = 0.50). PrismICU, which integrated clinical parameters data and CXR images, performed better than single-modal models and the existing scoring system. It supports the potential of multimodal models based on structured data and imaging in clinical management.


Assuntos
Unidades de Terapia Intensiva , Radiografia Torácica , Humanos , Masculino , Radiografia Torácica/métodos , Feminino , Pessoa de Meia-Idade , Idoso , Redes Neurais de Computação , Prognóstico , Aprendizado de Máquina , Mortalidade Hospitalar
9.
Science ; 385(6710): 744-752, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39146426

RESUMO

Air sensitivity remains a substantial barrier to the commercialization of sodium (Na)-layered oxides (NLOs). This problem has puzzled the community for decades because of the complexity of interactions between air components and their impact on both bulk and surfaces of NLOs. We show here that water vapor plays a pivotal role in initiating destructive acid and oxidative degradations of NLOs only when coupled with carbon dioxide or oxygen, respectively. Quantification analysis revealed that reducing the defined cation competition coefficient (η), which integrates the effects of ionic potential and sodium content, and increasing the particle size can enhance the resistance to acid attack, whereas using high-potential redox couples can eliminate oxidative degradation. These findings elucidate the underlying air deterioration mechanisms and rationalize the design of air-stable NLOs.

10.
Natl Sci Rev ; 11(9): nwae255, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39175595

RESUMO

The Jahn-Teller effect (JTE) arising from lattice-electron coupling is a fascinating phenomenon that profoundly affects important physical properties in a number of transition-metal compounds. Controlling JT distortions and their corresponding electronic structures is highly desirable to tailor the functionalities of materials. Here, we propose a local coordinate strategy to regulate the JTE through quantifying occupancy in the [Formula: see text] and [Formula: see text] orbitals of Mn and scrutinizing the symmetries of the ligand oxygen atoms in MnO6 octahedra in LiMn2O4 and Li0.5Mn2O4. The effectiveness of such a strategy has been demonstrated by constructing P2-type NaLi x Mn1 - x O2 oxides with different Li/Mn ordering schemes. In addition, this strategy is also tenable for most 3d transition-metal compounds in spinel and perovskite frameworks, indicating the universality of local coordinate strategy and the tunability of the lattice-orbital coupling in transition-metal oxides. This work demonstrates a useful strategy to regulate JT distortion and provides useful guidelines for future design of functional materials with specific physical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA