Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673160

RESUMO

Welded steel plates are widely used in various structural applications, and the presence of inclined welds is often encountered in practical scenarios. Carbon fiber reinforced polymer (CFRP) has been proven to be effective for strengthening steel structures. However, the behavior of CFRP-strengthened welded steel plates with inclined welds, particularly considering the influence of welding residual stress, is limited. This paper aims to investigate the tensile behavior of CFRP-strengthened welded Q355 steel plates with inclined welds considering welding residual stress (WRS). First, WRS data were obtained by the X-ray diffraction (XRD) method at different locations. The maximum tensile and compressive residual stresses are 0.39 and 0.14 times the yield strength of the steel, respectively. Then, finite element models were established to investigate the effects of weld angles, weld width, and height on the WRS distribution of welded steel plates. Finally, the tensile performance of CFRP-strengthened welded plates with WRS was studied by numerical simulation. The results showed that the weld angles have little effect on the distribution pattern of residual stress but significantly affect the peak tensile WRS. When the weld angle changes from 0° to 60°, the peak tensile WRS decreases significantly from 0.32 to 0.06 times the yield strength of steel; furthermore, the influence of weld width and height on WRS is relatively limited. Under tension loading, the maximum stress occurs near the weld. The ends of the weld enter the yielding state later than the middle part of the weld due to the distribution of the WRS. As the weld angle increases and the length of the weld increases, the stress in the weld zone decreases, while the stress in the base material zone correspondingly increases. In addition, CFRP strengthening can reduce the magnitude of stress. This study provides preliminary references for understanding the tensile behavior of CFRP-strengthened welded steel plates with inclined welds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA