Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Am Chem Soc ; 144(42): 19417-19429, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36226909

RESUMO

Crystals are known to grow nonclassically or via four classical modes (the layer-by-layer, dislocation-driven, dendritic, and normal modes, which generally involve minimal interfacet surface diffusion). The field of nanoscience considers this framework to interpret how nanocrystals grow; yet, the growth of many anisotropic nanocrystals remains enigmatic, suggesting that the framework may be incomplete. Here, we study the solution-phase growth of pentatwinned Au nanorods without Br, Ag, or surfactants. Lower supersaturation conditions favored anisotropic growth, which appeared at variance with the known modes. Temporal electron microscopy revealed kinetically limited adatom funneling, as adatoms diffused asymmetrically along the vicinal facets (situated inbetween the {100} side-facets and {111} end-facets) of our nanorods. These vicinal facets were perpetuated throughout the synthesis and, especially at lower supersaturation, facilitated {100}-to-vicinal-to-{111} adatom diffusion. We derived a growth model from classical theory in view of our findings, which showed that our experimental growth kinetics were consistent with nanorods growing via two modes simultaneously: radial growth occurred via the layer-by-layer mode on {100} side-facets, whereas the asymmetric interfacet diffusion of adatoms to {111} end-facets mediated longitudinal growth. Thus, shape anisotropy was not driven by modulating the relative rates of monomer deposition on different facets, as conventionally thought, but rather by modulating the relative rates of monomer integration via interfacet diffusion. This work shows how controlling supersaturation, a thermodynamic parameter, can uncover distinct kinetic phenomena on nanocrystals, such as asymmetric interfacet surface diffusion and a fundamental growth mode for which monomer deposition and integration occur on different facets.


Assuntos
Nanopartículas Metálicas , Nanotubos , Nanopartículas Metálicas/química , Nanotubos/química , Anisotropia , Cinética , Tensoativos
2.
CMAJ ; 192(41): E1189-E1197, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32732229

RESUMO

BACKGROUND: Unprecedented demand for N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic has led to a global shortage of these masks. We validated a rapidly applicable, low-cost decontamination protocol in compliance with regulatory standards to enable the safe reuse of N95 respirators. METHODS: We inoculated 4 common models of N95 respirators with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and evaluated viral inactivation after disinfection for 60 minutes at 70°C and 0% relative humidity. Similarly, we evaluated thermal disinfection at 0% to 70% relative humidity for masks inoculated with Escherichia coli. We assessed masks subjected to multiple cycles of thermal disinfection for structural integrity using scanning electron microscopy and for protective functions using standards of the United States National Institute for Occupational Safety and Health for particle filtration efficiency, breathing resistance and respirator fit. RESULTS: A single heat treatment rendered SARS-CoV-2 undetectable in all mask samples. Compared with untreated inoculated control masks, E. coli cultures at 24 hours were virtually undetectable from masks treated at 70°C and 50% relative humidity (optical density at 600 nm wavelength, 0.02 ± 0.02 v. 2.77 ± 0.09, p < 0.001), but contamination persisted for masks treated at lower relative humidity. After 10 disinfection cycles, masks maintained fibre diameters similar to untreated masks and continued to meet standards for fit, filtration efficiency and breathing resistance. INTERPRETATION: Thermal disinfection successfully decontaminated N95 respirators without impairing structural integrity or function. This process could be used in hospitals and long-term care facilities with commonly available equipment to mitigate the depletion of N95 masks.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Transmissão de Doença Infecciosa/prevenção & controle , Desinfecção/métodos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Dispositivos de Proteção Respiratória/normas , COVID-19 , Temperatura Alta , Humanos , SARS-CoV-2
3.
Langmuir ; 35(5): 1756-1767, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30056710

RESUMO

Surface fouling remains an exigent issue for many biological implants. Unwanted solutes adsorb to reduce device efficiency and hasten degradation while increasing the risks of microbial colonization and adverse inflammatory response. To address unwanted fouling in modern implants in vivo, surface modification with antifouling polymers has become indispensable. Recently, zwitterionic self-assembled monolayers, which contain two or more charged functional groups but are electrostatically neutral and form highly hydrated surfaces, have been the focus of many antifouling coatings. Reports using various compositions of zwitterionic polymer brushes have demonstrated ultralow fouling in the ng/cm2 range. These coatings, however, are thick and can hinder the target application of biological devices. Here, we report an ultrathin (8.52 Å) antifouling self-assembled monolayer composed of cysteine that is amenable to facile fabrication. The antifouling characteristics of the zwitterionic surfaces were evaluated against bovine serum albumin, fibrinogen, and human blood in real time using quartz crystal microbalance and surface plasmon resonance imaging. Compared to untreated gold surfaces, the ultrathin cysteine coating reduced the adsorption of bovine serum albumin by 95% (43 ng/cm2 adsorbed) after 3 h and 90% reduction after 24 h. Similarly, the cysteine self-assembled monolayer reduced the adsorption of fibrinogen as well as human blood by >90%. The surfaces were further characterized using scanning electron microscopy: protein-enhanced adsorption and cellular adsorption in human blood was found on untreated surfaces but not on the cysteine SAM-protected surfaces. These findings suggest that surfaces can be functionalized with an ultrathin layer of cysteine to resist the adsorption of key proteins, with performance comparable to zwitterionic polymer brushes. As such, cysteine surface coatings are a promising methodology to improve the long-term utility of biological devices.


Assuntos
Incrustação Biológica/prevenção & controle , Cisteína/química , Membranas Artificiais , Adsorção/efeitos dos fármacos , Animais , Sangue , Bovinos , Fibrinogênio/química , Humanos , Técnicas de Microbalança de Cristal de Quartzo , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
4.
Anesthesiology ; 130(5): 778-790, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870158

RESUMO

BACKGROUND: Human umbilical cord mesenchymal stromal cells possess considerable therapeutic promise for acute respiratory distress syndrome. Umbilical cord mesenchymal stromal cells may exert therapeutic effects via extracellular vesicles, while priming umbilical cord mesenchymal stromal cells may further enhance their effect. The authors investigated whether interferon-γ-primed umbilical cord mesenchymal stromal cells would generate mesenchymal stromal cell-derived extracellular vesicles with enhanced effects in Escherichia coli (E. coli) pneumonia. METHODS: In a university laboratory, anesthetized adult male Sprague-Dawley rats (n = 8 to 18 per group) underwent intrapulmonary E. coli instillation (5 × 10 colony forming units per kilogram), and were randomized to receive (a) primed mesenchymal stromal cell-derived extracellular vesicles, (b) naïve mesenchymal stromal cell-derived extracellular vesicles (both 100 million mesenchymal stromal cell-derived extracellular vesicles per kilogram), or (c) vehicle. Injury severity and bacterial load were assessed at 48 h. In vitro studies assessed the potential for primed and naïve mesenchymal stromal cell-derived extracellular vesicles to enhance macrophage bacterial phagocytosis and killing. RESULTS: Survival increased with primed (10 of 11 [91%]) and naïve (8 of 8 [100%]) mesenchymal stromal cell-derived extracellular vesicles compared with vehicle (12 of 18 [66.7%], P = 0.038). Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles reduced alveolar-arterial oxygen gradient (422 ± 104, 536 ± 58, 523 ± 68 mm Hg, respectively; P = 0.008), reduced alveolar protein leak (0.7 ± 0.3, 1.4 ± 0.4, 1.5 ± 0.7 mg/ml, respectively; P = 0.003), increased lung mononuclear phagocytes (23.2 ± 6.3, 21.7 ± 5, 16.7 ± 5 respectively; P = 0.025), and reduced alveolar tumor necrosis factor alpha concentrations (29 ± 14.5, 35 ± 12.3, 47.2 ± 6.3 pg/ml, respectively; P = 0.026) compared with vehicle. Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles enhanced endothelial nitric oxide synthase production in the injured lung (endothelial nitric oxide synthase/ß-actin = 0.77 ± 0.34, 0.25 ± 0.29, 0.21 ± 0.33, respectively; P = 0.005). Both primed and naïve mesenchymal stromal cell-derived extracellular vesicles enhanced E. coli phagocytosis and bacterial killing in human acute monocytic leukemia cell line (THP-1) in vitro (36.9 ± 4, 13.3 ± 8, 0.1 ± 0.01%, respectively; P = 0.0004) compared with vehicle. CONCLUSIONS: Extracellular vesicles from interferon-γ-primed human umbilical cord mesenchymal stromal cells more effectively attenuated E. coli-induced lung injury compared with extracellular vesicles from naïve mesenchymal stromal cells, potentially via enhanced macrophage phagocytosis and killing of E. coli.


Assuntos
Lesão Pulmonar Aguda/terapia , Infecções por Escherichia coli/complicações , Vesículas Extracelulares/fisiologia , Interferon gama/farmacologia , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Humanos , Macrófagos/imunologia , Masculino , Fagocitose , Ratos , Ratos Sprague-Dawley
5.
Analyst ; 141(19): 5627-36, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27458615

RESUMO

A growing understanding of the fundamental role of proteins in diseases has advanced the development of quantitative protein assays in the medical field. Current techniques for protein analysis include enzyme-linked immunosorbent assays (ELISA), flow cytometry, mass spectrometry, and immunohistochemistry. However, many of these conventional strategies require specialized training, expensive antibodies, or sophisticated equipment, raising assay costs and limiting their application to laboratory analysis. Here, we present the application of a "chemical nose" type colorimetric gold nanoparticle sensor for detection, quantification, and identification of single proteins, protein mixtures, and proteins within the complex environment of human serum. The unique interactions between a mixture of two different gold nanoparticle morphologies (spherical and branched) and six separate proteins (bovine serum albumin, human serum albumin, immunoglobulin G, fibrinogen, lysozyme, and hemoglobin) generated distinguishable protein- and concentration-dependent absorption spectra, even at nanomolar concentrations. Furthermore, we show that this response is sensitive to the relative abundance of different proteins in solution, permitting analysis of protein mixtures. Finally, we demonstrate the ability to distinguish human serum samples with and without a clinically relevant two-fold increase in immunoglobulin G, without the use of expensive reagents or complicated sample processing.


Assuntos
Técnicas Biossensoriais , Misturas Complexas/análise , Proteínas/análise , Soro/química , Colorimetria , Ouro , Humanos , Nanopartículas Metálicas
6.
CMAJ ; 192(49): E1747-E1756, 2020 Dec 07.
Artigo em Francês | MEDLINE | ID: mdl-33288514

RESUMO

CONTEXTE: La demande sans précédent de respirateurs N95 durant la pandémie de maladie à coronavirus 2019 (COVID-19) a entraîné une pénurie mondiale. Nous avons validé un protocole de décontamination rapide et économique répondant aux normes réglementaires afin de permettre la réutilisation sûre de ce type de masque. MÉTHODES: Nous avons contaminé 4 modèles courants de respirateurs N95 avec le coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2) et avons évalué l'inactivation virale après une désinfection de 60 minutes à 70 °C et à une humidité relative de 0 %. De même, nous avons étudié l'efficacité de la désinfection thermique, à une humidité relative allant de 0 % à 70 %, de masques contaminés à Escherichia coli. Enfin, nous avons examiné des masques soumis à de multiples cycles de désinfection thermique: nous avons évalué leur intégrité structurelle à l'aide d'un microscope à balayage, et leurs propriétés protectrices au moyen des normes du National Institute for Occupational Safety and Health des États-Unis relatives à la filtration particulaire, à la résistance respiratoire et à l'ajustement. RÉSULTATS: Une seule désinfection thermique a suffi pour que le SRAS-CoV-2 ne soit plus décelable sur les masques étudiés. En ce qui concerne les masques contaminés à E. coli, une culture de 24 heures a révélé que la bactérie n'était pratiquement plus décelable sur les masques désinfectés à 70 °C et à une humidité relative de 50 %, contrairement aux masques non désinfectés (densité optique à une longueur d'onde de 600 nm : 0,02 ± 0,02 contre 2,77 ± 0,09; p < 0,001), mais qu'elle persistait sur les masques traités à une humidité relative moindre. Les masques ayant subi 10 cycles de désinfection avaient toujours des fibres de diamètre semblable à celui des fibres des masques non traités, et ils répondaient encore aux normes d'ajustement, de filtration et de résistance respiratoire. INTERPRÉTATION: La désinfection thermique a réussi à décontaminer les respirateurs N95 sans compromettre leur intégrité structurelle ni modifier leurs propriétés. Elle pourrait se faire dans les hôpitaux et les établissements de soins de longue durée avec de l'équipement facilement accessible, ce qui réduirait la pénurie de N95.

7.
Nat Biotechnol ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191664

RESUMO

Prime editing enables precise installation of genomic substitutions, insertions and deletions in living systems. Efficient in vitro and in vivo delivery of prime editing components, however, remains a challenge. Here we report prime editor engineered virus-like particles (PE-eVLPs) that deliver prime editor proteins, prime editing guide RNAs and nicking single guide RNAs as transient ribonucleoprotein complexes. We systematically engineered v3 and v3b PE-eVLPs with 65- to 170-fold higher editing efficiency in human cells compared to a PE-eVLP construct based on our previously reported base editor eVLP architecture. In two mouse models of genetic blindness, single injections of v3 PE-eVLPs resulted in therapeutically relevant levels of prime editing in the retina, protein expression restoration and partial visual function rescue. Optimized PE-eVLPs support transient in vivo delivery of prime editor ribonucleoproteins, enhancing the potential safety of prime editing by reducing off-target editing and obviating the possibility of oncogenic transgene integration.

8.
Nanoscale Horiz ; 7(4): 376-384, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35075470

RESUMO

Supersaturation is the fundamental parameter driving crystal formation, yet its dynamics in the growth of colloidal nanocrystals (NCs) remain poorly understood. Here, we demonstrate an approach to characterize supersaturation during classical NC growth. We develop a framework that relates noninvasive measurements of the temporal, size-dependent optical properties of growing NCs to the supersaturation dynamics underlying their growth. Using this approach, we investigate the seed-mediated growth of colloidal Au nanocubes, identifying a triphasic sequence of supersaturation dynamics: rapid monomer consumption, sustained supersaturation, and then gradual monomer depletion. These NCs undergo different shape evolutions in different phases of the supersaturation dynamics. As shown with the Au nanocubes, elucidated supersaturation profiles enable the prediction of growth profiles of NCs. We then apply these insights to rationally modulate NC shape evolutions, decreasing the yield of impurity products. Our findings reveal that the supersaturation dynamics of NC growth can be more complex than previously understood. As our approach is applicable to many types of NCs undergoing classical growth, this work presents an initial step towards more deeply interpreting the phenomena governing nanoscale crystal growth and provides insight for the rational design of NCs.


Assuntos
Nanopartículas , Cristalização , Nanopartículas/química
9.
ACS Biomater Sci Eng ; 8(4): 1396-1426, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35294187

RESUMO

Mucus is a complex viscoelastic gel and acts as a barrier covering much of the soft tissue in the human body. High vascularization and accessibility have motivated drug delivery to various mucosal surfaces; however, these benefits are hindered by the mucus layer. To overcome the mucus barrier, many nanomedicines have been developed, with the goal of improving the efficacy and bioavailability of drug payloads. Two major nanoparticle-based strategies have emerged to facilitate mucosal drug delivery, namely, mucoadhesion and mucopenetration. Generally, mucoadhesive nanoparticles promote interactions with mucus for immobilization and sustained drug release, whereas mucopenetrating nanoparticles diffuse through the mucus and enhance drug uptake. The choice of strategy depends on many factors pertaining to the structural and compositional characteristics of the target mucus and mucosa. While there have been promising results in preclinical studies, mucus-nanoparticle interactions remain poorly understood, thus limiting effective clinical translation. This article reviews nanomedicines designed with mucoadhesive or mucopenetrating properties for mucosal delivery, explores the influence of site-dependent physiological variation among mucosal surfaces on efficacy, transport, and bioavailability, and discusses the techniques and models used to investigate mucus-nanoparticle interactions. The effects of non-homeostatic perturbations on protein corona formation, mucus composition, and nanoparticle performance are discussed in the context of mucosal delivery. The complexity of the mucosal barrier necessitates consideration of the interplay between nanoparticle design, tissue-specific differences in mucus structure and composition, and homeostatic or disease-related changes to the mucus barrier to develop effective nanomedicines for mucosal delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Mucosa/metabolismo , Muco/química , Muco/metabolismo , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo
10.
Acta Biomater ; 122: 1-25, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33352300

RESUMO

Recent advances in biomaterials integrate metal nanoparticles with hydrogels to generate composite materials that exhibit new or improved properties. By precisely controlling the composition, arrangement and interactions of their constituents, these hybrid materials facilitate biomedical applications through myriad approaches. In this work we seek to highlight three popular frameworks for designing metal nanoparticle-hydrogel hybrid materials for biomedical applications. In the first approach, the properties of metal nanoparticles are incorporated into a hydrogel matrix such that the composite is selectively responsive to stimuli such as light and magnetic flux, enabling precisely activated therapeutics and self-healing biomaterials. The second approach mediates the dynamic reorganization of metal nanoparticles based on environment-directed changes in hydrogel structure, leading to chemosensing, microbial and viral detection, and drug-delivery capabilities. In the third approach, the hydrogel matrix spatially arranges metal nanoparticles to produce metamaterials or passively enhance nanoparticle properties to generate improved substrates for biomedical applications including tissue engineering and wound healing. This article reviews the construction, properties and biomedical applications of metal nanoparticle-hydrogel composites, with a focus on how they help to prevent, diagnose and treat diseases. Discussion includes how the composites lead to new or improved properties, how current biomedical research leverages these properties and the emerging directions in this growing field.


Assuntos
Hidrogéis , Nanopartículas Metálicas , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Engenharia Tecidual
11.
Elife ; 102021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33861198

RESUMO

Background: Which virological factors mediate overdispersion in the transmissibility of emerging viruses remains a long-standing question in infectious disease epidemiology. Methods: Here, we use systematic review to develop a comprehensive dataset of respiratory viral loads (rVLs) of SARS-CoV-2, SARS-CoV-1 and influenza A(H1N1)pdm09. We then comparatively meta-analyze the data and model individual infectiousness by shedding viable virus via respiratory droplets and aerosols. Results: The analyses indicate heterogeneity in rVL as an intrinsic virological factor facilitating greater overdispersion for SARS-CoV-2 in the COVID-19 pandemic than A(H1N1)pdm09 in the 2009 influenza pandemic. For COVID-19, case heterogeneity remains broad throughout the infectious period, including for pediatric and asymptomatic infections. Hence, many COVID-19 cases inherently present minimal transmission risk, whereas highly infectious individuals shed tens to thousands of SARS-CoV-2 virions/min via droplets and aerosols while breathing, talking and singing. Coughing increases the contagiousness, especially in close contact, of symptomatic cases relative to asymptomatic ones. Infectiousness tends to be elevated between 1 and 5 days post-symptom onset. Conclusions: Intrinsic case variation in rVL facilitates overdispersion in the transmissibility of emerging respiratory viruses. Our findings present considerations for disease control in the COVID-19 pandemic as well as future outbreaks of novel viruses. Funding: Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant program, NSERC Senior Industrial Research Chair program and the Toronto COVID-19 Action Fund.


To understand how viruses spread scientists look at two things. One is ­ on average ­ how many other people each infected person spreads the virus to. The other is how much variability there is in the number of people each person with the virus infects. Some viruses like the 2009 influenza H1N1, a new strain of influenza that caused a pandemic beginning in 2009, spread pretty uniformly, with many people with the virus infecting around two other people. Other viruses like SARS-CoV-2, the one that causes COVID-19, are more variable. About 10 to 20% of people with COVID-19 cause 80% of subsequent infections ­ which may lead to so-called superspreading events ­ while 60-75% of people with COVID-19 infect no one else. Learning more about these differences can help public health officials create better ways to curb the spread of the virus. Chen et al. show that differences in the concentration of virus particles in the respiratory tract may help to explain why superspreaders play such a big role in transmitting SARS-CoV-2, but not the 2009 influenza H1N1 virus. Chen et al. reviewed and extracted data from studies that have collected how much virus is present in people infected with either SARS-CoV-2, a similar virus called SARS-CoV-1 that caused the SARS outbreak in 2003, or with 2009 influenza H1N1. Chen et al. found that as the variability in the concentration of the virus in the airways increased, so did the variability in the number of people each person with the virus infects. Chen et al. further used mathematical models to estimate how many virus particles individuals with each infection would expel via droplets or aerosols, based on the differences in virus concentrations from their analyses. The models showed that most people with COVID-19 infect no one because they expel little ­ if any ­ infectious SARS-CoV-2 when they talk, breathe, sing or cough. Highly infectious individuals on the other hand have high concentrations of the virus in their airways, particularly the first few days after developing symptoms, and can expel tens to thousands of infectious virus particles per minute. By contrast, a greater proportion of people with 2009 influenza H1N1 were potentially infectious but tended to expel relatively little infectious virus when the talk, sing, breathe or cough. These results help explain why superspreaders play such a key role in the ongoing pandemic. This information suggests that to stop this virus from spreading it is important to limit crowd sizes, shorten the duration of visits or gatherings, maintain social distancing, talk in low volumes around others, wear masks, and hold gatherings in well-ventilated settings. In addition, contact tracing can prioritize the contacts of people with high concentrations of virus in their airways.


Assuntos
Aerossóis , COVID-19/transmissão , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/transmissão , SARS-CoV-2/fisiologia , Síndrome Respiratória Aguda Grave/transmissão , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Eliminação de Partículas Virais , Transmissão de Doença Infecciosa , Humanos , Carga Viral
12.
Elife ; 102021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414888

RESUMO

Background: Previously, we conducted a systematic review and analyzed the respiratory kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Chen et al., 2021). How age, sex, and coronavirus disease 2019 (COVID-19) severity interplay to influence the shedding dynamics of SARS-CoV-2, however, remains poorly understood. Methods: We updated our systematic dataset, collected individual case characteristics, and conducted stratified analyses of SARS-CoV-2 shedding dynamics in the upper (URT) and lower respiratory tract (LRT) across COVID-19 severity, sex, and age groups (aged 0-17 years, 18-59 years, and 60 years or older). Results: The systematic dataset included 1266 adults and 136 children with COVID-19. Our analyses indicated that high, persistent LRT shedding of SARS-CoV-2 characterized severe COVID-19 in adults. Severe cases tended to show slightly higher URT shedding post-symptom onset, but similar rates of viral clearance, when compared to nonsevere infections. After stratifying for disease severity, sex and age (including child vs. adult) were not predictive of respiratory shedding. The estimated accuracy for using LRT shedding as a prognostic indicator for COVID-19 severity was up to 81%, whereas it was up to 65% for URT shedding. Conclusions: Virological factors, especially in the LRT, facilitate the pathogenesis of severe COVID-19. Disease severity, rather than sex or age, predicts SARS-CoV-2 kinetics. LRT viral load may prognosticate COVID-19 severity in patients before the timing of deterioration and should do so more accurately than URT viral load. Funding: Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, NSERC Senior Industrial Research Chair, and the Toronto COVID-19 Action Fund.


Assuntos
COVID-19/fisiopatologia , Sistema Respiratório/fisiopatologia , SARS-CoV-2/fisiologia , Eliminação de Partículas Virais , Adulto , COVID-19/diagnóstico , COVID-19/virologia , Criança , Feminino , Humanos , Masculino , Prognóstico , Sistema Respiratório/virologia , Índice de Gravidade de Doença , Carga Viral
13.
Behav Processes ; 164: 123-132, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059765

RESUMO

Behaviour plays a crucial role in a species' ability to cope with environmental challenges. However, this ability may be affected by repeatable individual differences in behaviour, a pattern described as animal personality. The consideration of animal personality is therefore essential when understanding how a species copes with its environmental stressors. For sand bubbler crabs, feeding is often disrupted by environmental interference, in the forms of predatory events and human recreational activities. How these crabs deal with such disruption is, however, not well documented. Here, we characterised the foraging and risk-taking behaviours of Dotilla wichmanni when responding to induced disruption. Whether these are personality traits and if they form part of a behavioural syndrome were also examined. We quantify both behaviours by taking four measures (two per behaviour). All behavioural measures were consistently different among individuals, suggesting that D. wichmanni exhibits personality. Results further suggest that they could cope with some environmental interference, although this is limited. Crabs did not vary the time spent hiding in burrows with each repeated disruption nor did behavioural plasticity differ between individuals. Notwithstanding these, the absence of support for a foraging-risk propensity behavioural syndrome points to possible complexity in the crabs' coping ability.


Assuntos
Adaptação Psicológica , Comportamento Apetitivo , Braquiúros , Personalidade , Assunção de Riscos , Animais , Meio Ambiente , Individualidade
15.
Biosens Bioelectron ; 83: 115-25, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27108254

RESUMO

Rapid and portable diagnosis of pathogenic bacteria can save lives lost from infectious diseases. Biosensors based on a "chemical nose" approach are attracting interest because they are versatile but the governing interactions between bacteria and the biosensors are poorly understood. Here, we use a "chemical nose" biosensor based on gold nanoparticles to explore the role of extracellular polymeric substances in bacteria-nanoparticle interactions. We employ simulations using Maxwell-Garnett theory to show how the type and extent of aggregation of nanoparticles influence their colorimetric response to bacteria. Using eight different species of Gram-positive and Gram-negative bacteria, we demonstrate that this "chemical nose" can detect and identify bacteria over two orders of magnitude of concentration (89% accuracy). Additionally, the "chemical nose" differentiates between binary and tertiary mixtures of the three most common hospital-isolated pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa (100% accuracy). We demonstrate that the complex interactions between nanoparticles and bacterial surface determine the colorimetric response of gold nanoparticles and thus, govern the performance of "chemical nose" biosensors.


Assuntos
Bactérias/química , Bactérias/citologia , Ouro/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Nanopartículas Metálicas/ultraestrutura , Polímeros/química
16.
Biosens Bioelectron ; 61: 386-90, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24912040

RESUMO

Ocular pathogens can cause serious damages in the eye leading to severe vision loss and even blindness if left untreated. Identification of pathogens is crucial for administering the appropriate antibiotics in order to gain effective control over ocular infection. Herein, we report a gold nanostar based "chemical nose" for visually identifying ocular pathogens. Using a spectrophotometer and nanostars of different sizes and degrees of branching, we show that the "chemical nose" is capable of identifying the following clinically relevant ocular pathogens with an accuracy of 99%: S. aureus, A. xylosoxidans, D. acidovorans and S. maltophilia. The differential colorimetric response is due to electrostatic aggregation of cationic gold nanostars around bacteria without the use of biomolecule ligands such as aptamers or antibodies. Transmission electron microscopy confirms that the number of gold nanostars aggregated around each bacterium correlates closely with the colorimetric response. Thus, gold nanostars serve as a promising platform for rapid visual identification of ocular pathogens with application in point-of-care diagnostics.


Assuntos
Bactérias/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Ouro/química , Ceratite/microbiologia , Nanoestruturas/química , Colorimetria/instrumentação , Humanos , Ceratite/diagnóstico , Nanoestruturas/ultraestrutura
17.
Sci Rep ; 4: 3796, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24448112

RESUMO

HIV has become one of the most devastating pathogens in human history. Despite fast progress in HIV-related basic research, antiretroviral therapy (ART) remains the most effective method to save AIDS patients' lives. Unfortunately, ART cannot be universally accessed, especially in developing countries, due to the lack of effective treatment monitoring diagnostics. Here, we present an inexpensive, rapid and portable micro-a-fluidic platform, which can streamline the process of an enzyme-linked immunosorbent assay (ELISA) in a fully automated manner for CD4 cell count. The micro-a-fluidic CD4 cell count is achieved by eliminating operational fluid flow via "moving the substrate", as opposed to "flowing liquid" in traditional ELISA or microfluidic methods. This is the first demonstration of capturing and detecting cells from unprocessed whole blood using the enzyme-linked immunosorbent assay (ELISA) in a microfluidic channel. Combined with cell phone imaging, the presented micro-a-fluidic ELISA platform holds great promise for offering rapid CD4 cell count to scale up much needed ART in resource-constrained settings. The developed system can be extended to multiple areas for ELISA-related assays.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Infecções por HIV/sangue , Infecções por HIV/diagnóstico , Microfluídica/instrumentação , Microfluídica/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/virologia , Telefone Celular , Citometria de Fluxo , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Humanos , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA