Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139216

RESUMO

(1) To examine the potential mechanism of the Asarum-Angelica drug pair against periodontitis and provide an experimental basis for the treatment of periodontitis with herbal medicine. (2) The core components and core targets of the Asarum-Angelica drug pair in the treatment of periodontitis were detected according to network pharmacology methods. Finally, the effect of the Asarum-Angelica drug pair on osteogenic differentiation was observed in mouse embryonic osteoblast precursor cells. (3) According to the results of network pharmacology, there are 10 potential active ingredients in the Asarum-Angelica drug pair, and 44 potential targets were obtained by mapping the targets with periodontitis treatment. Ten potential active ingredients, such as kaempferol and ß-sitosterol, may play a role in treating periodontitis. Cell experiments showed that the Asarum-Angelica drug pair can effectively promote the expression of osteoblast markers alkaline phosphatase (ALP), Runt-related Transcription Factor 2 (RUNX2), and BCL2 mRNA and protein in an inflammatory environment (p < 0.05). (4) Network pharmacology effectively analyzed the molecular mechanism of Asarum-Angelica in the treatment of periodontitis, and the Asarum-Angelica drug pair can promote the differentiation of osteoblasts.


Assuntos
Angelica , Asarum , Medicamentos de Ervas Chinesas , Periodontite , Animais , Camundongos , Farmacologia em Rede , Osteogênese , Periodontite/tratamento farmacológico , Simulação de Acoplamento Molecular
2.
Int J Biol Macromol ; 259(Pt 1): 128200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37979759

RESUMO

The bacteria that invade the periapical tissue of teeth can directly damage tissue cells such as periapical fibroblasts, leading to an inflammatory response in the periapical tissue and ultimately resulting in bone destruction. We investigated the role of fibroblast activation protein α (FAPα) and integrin α5 (ITGA5) in periapical bone destruction. This study found that FAPα and ITGA5 were highly expressed in human tissues from patients with chronic apical periodontitis. Osteoclast differentiation decreased when FAPα or ITGA5 was silenced and inhibited. The results of protein molecular docking showed that FAPα had good binding affinity to ITGA5, and its free energy was -14.5 kcal/mol. Immunofluorescence staining and co-immunoprecipitation showed that FAPα and ITGA5 formed protein complexes in the inflammatory microenvironment. In conclusion, this study proved that FAPα and ITGA5 participate in the regulation of osteoclast differentiation by forming protein complexes in the inflammatory microenvironment, which then regulates the occurrence and development of chronic apical periodontitis.


Assuntos
Proteínas de Membrana , Periodontite Periapical , Periodontite , Humanos , Integrina alfa5/metabolismo , Simulação de Acoplamento Molecular , Endopeptidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA