RESUMO
BACKGROUND AIMS: SLC25A47 was initially identified as a mitochondrial HCC-downregulated carrier protein, but its physiological functions and transport substrates are unknown. We aimed to investigate the physiological role of SLC25A47 in hepatic metabolism. APPROACH RESULTS: In the treatment of hepatocytes with metformin, we found that metformin can transcriptionally activate the expression of Slc25a47 , which is required for AMP-activated protein kinase α (AMPKα) phosphorylation. Slc25a47 -deficient mice had increased hepatic lipid content, triglycerides, and cholesterol levels, and we found that Slc25a47 deficiency suppressed AMPKα phosphorylation and led to an increased accumulation of nuclear SREBPs, with elevated fatty acid and cholesterol biosynthetic activities. Conversely, when Slc25a47 was overexpressed in mouse liver, AMPKα was activated and resulted in the inhibition of lipogenesis. Moreover, using a diethylnitrosamine-induced mouse HCC model, we found that the deletion of Slc25a47 promoted HCC tumorigenesis and development through the activated mammalian target of rapamycin cascade. Employing homology modeling of SLC25A47 and virtual screening of the human metabolome database, we demonstrated that NAD + was an endogenous substrate for SLC25A47, and the activity of NAD + -dependent sirtuin 3 declined in Slc25a47 -deficient mice, followed by inactivation of AMPKα. CONCLUSIONS: Our findings reveal that SLC25A47, a hepatocyte-specific mitochondrial NAD + transporter, is one of the pharmacological targets of metformin and regulates lipid homeostasis through AMPKα, and may serve as a potential drug target for treating NAFLD and HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Animais , Humanos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Lipídeos , NAD/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Metformina/farmacologia , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Ácidos Graxos/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismoRESUMO
Kidney-yang deficiency syndrome (KYDS) is a metabolic disease caused by a neuro-endocrine disorder. The You-gui pill (YGP) is a classic traditional Chinese medicine (TCM) formula for the treatment of KYDS and has been widely used to warm and recuperate KYDS clinically for hundreds of years in China. However, it is unknown whetherthe corresponding targets and metabolic pathways can also be found via using metabonomics based on one platform (e.g., 1H NMR) to study different biological samples of KYDS. At the same time, relevant reports on further molecular verification (e.g., RT-qPCR analysis) of these targets associated with biomarkers and metabolic pathways have not yet, to our knowledge, been seen in KYDS's research. In the present study, a comprehensive strategy integrating systems pharmacology and 1H NMR-based urinary metabonomics analysis was proposed to identify the target proteins and metabolic pathways that YGP acts on KYDS. Thereafter, further validation of target proteins in kidney tissue was performed through quantitative real-time PCR analysis (RT-qPCR). Furthermore, biochemical parameters and histopathological analysis were studied. As a result, seven target proteins (L-serine dehydratase; phosphoenolpyruvate carboxykinase; spermidine synthase; tyrosyl-tRNA synthetase, glutamine synthetase; 3-hydroxyacyl-CoA dehydrogenase; glycine amidinotransferase) in YGP were discovered to play a therapeutic role in KYDS via affecting eight metabolic pathways (glycine, serine and threonine metabolism; butanoate metabolism; TCA cycle, etc.). Importantly, three target proteins (i.e., 3-hydroxyacyl-CoA dehydrogenase; glutamine synthetase; and glycine amidinotransferase) and two metabolic pathways (butanoate metabolism and dicarboxylate metabolism) related to KYDS, to our knowledge, had been newly discovered in our study. The mechanism of action mainly involved energy metabolism, oxidative stress, ammonia metabolism, amino acid metabolism, and fatty acid metabolism. In short, our study demonstrated that targets and metabolic pathways for the treatment of KYDS by YGP can be effectively found via combining with systems pharmacology and urinary metabonomics. In addition to this, common and specific targets and metabolic pathways of KYDS treated by YGP can be found effectively by integration with the analysis of different biological samples (e.g., serum, urine, feces, and tissue). It is; therefore, important that this laid the foundation for deeper mechanism research and drug-targeted therapy of KYDS in future.
Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Nefropatias/etiologia , Nefropatias/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Deficiência da Energia Yang/etiologia , Deficiência da Energia Yang/metabolismo , Animais , Biomarcadores , Biópsia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Nefropatias/diagnóstico , Nefropatias/tratamento farmacológico , Espectroscopia de Ressonância Magnética , Masculino , Metaboloma , Metabolômica/métodos , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Biologia de Sistemas/métodos , Deficiência da Energia Yang/diagnóstico , Deficiência da Energia Yang/tratamento farmacológicoRESUMO
By using a strategy of introducing hydrophobic groups to the linkers, a hydrostable MOF was constructed based on 5-nitroisophthalate and 2,2'-dimethyl-4,4'-bipyridine coligands, revealing a 3D dia topology structure with a 1D channel parallel to the c axis. TGA, PXRD, and water vapor sorption results show high thermal and water stability for the framework. The framework is very porous and possesses not only high busulfan payloads with an encapsulation efficiency up to 21.5% (17.2 wt %) but also very high CO2 selective capture compared with that of other small gases (i.e., CH4, N2, O2, CO, and H2) at 298 K based on molecular simulations due to the pore surface being populated by methyl and nitryl groups. Furthermore, in vitro MTT assays were conducted on four different cells lines with increasing concentrations of the framework, and the results showed that the framework was nontoxic (cell viability >80%) in spite of the concentrations up to 500 µg/mL.
Assuntos
Dióxido de Carbono/isolamento & purificação , Portadores de Fármacos/química , Nitritos/química , Compostos Organometálicos/química , Ácidos Ftálicos/química , Piridinas/química , Adsorção , Animais , Antineoplásicos Alquilantes/administração & dosagem , Bussulfano/administração & dosagem , Sobrevivência Celular , Cristalografia por Raios X , Portadores de Fármacos/toxicidade , Humanos , Camundongos , Modelos Moleculares , Nitritos/toxicidade , Compostos Organometálicos/toxicidade , Ácidos Ftálicos/toxicidade , Porosidade , Piridinas/toxicidadeRESUMO
Monocarboxylate transporter 1 (MCT1) exhibits essential roles in cellular metabolism and energy supply. Although MCT1 is highly expressed in activated B cells, it is not clear how MCT1-governed monocarboxylates transportation is functionally coupled to antibody production during the glucose metabolism. Here, we report that B cell-lineage deficiency of MCT1 significantly influences the class-switch recombination (CSR), rendering impaired IgG antibody responses in Mct1f/fMb1Cre mice after immunization. Metabolic flux reveals that glucose metabolism is significantly reprogrammed from glycolysis to oxidative phosphorylation in Mct1-deficient B cells upon activation. Consistently, activation-induced cytidine deaminase (AID), is severely suppressed in Mct1-deficient B cells due to the decreased level of pyruvate metabolite. Mechanistically, MCT1 is required to maintain the optimal concentration of pyruvate to secure the sufficient acetylation of H3K27 for the elevated transcription of AID in activated B cells. Clinically, we found that MCT1 expression levels are significantly upregulated in systemic lupus erythematosus patients, and Mct1 deficiency can alleviate the symptoms of bm12-induced murine lupus model. Collectively, these results demonstrate that MCT1-mediated pyruvate metabolism is required for IgG antibody CSR through an epigenetic dependent AID transcription, revealing MCT1 as a potential target for vaccine development and SLE disease treatment.
Assuntos
Linfócitos B , Switching de Imunoglobulina , Animais , Humanos , Camundongos , Acetilação , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Glucose/metabolismo , Isotipos de Imunoglobulinas , Piruvatos/metabolismoRESUMO
Solute carrier transporters (SLCs) mediate nutrient and metabolite cellular homeostasis. Immune cells depend on SLCs to induce rapid and robust metabolic reprogramming, thereby controlling diverse immunological responses. Recent studies hint toward an important role of SLCs in immunity. Here, we review the emerging roles of SLCs in immunotherapy via modifying the metabolism and effector functions of immune cells. We focus on the roles of three major nutrient (glucose, amino acid, and lipid)-related transporters in immunity of representative cells [T cells, dendritic cells (DCs), natural killer (NK) cells, and macrophages) in innate and adaptive immunity. Other SLCs, such as ion transporters are also briefly discussed. Finally, we propose some potential strategies for targeting SLCs to augment tumour immunotherapy.
Assuntos
Imunoterapia , Neoplasias , Humanos , Células Matadoras Naturais , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias/metabolismo , Linfócitos T/metabolismoRESUMO
Silver-doped zinc oxide (Ag:ZnO) nanostructures were prepared by a facile and efficient wet oxidation method. This method included two steps: metallic Zn thin films mixed with Ag atoms were prepared by magnetron sputtering as the precursors, and then the precursors were oxidized in an O(2) atmosphere with water vapour present to form Ag:ZnO nanostructures. By controlling the oxidation conditions, pure ZnO and Ag:ZnO nanobelts/nanowires with a thickness of â¼ 20 nm and length of up to several tens of microns were synthesized. Scanning electron microscopy, transmission electron microscopy, cathodoluminescence and low temperature photoluminescence (PL) measurements were adopted to characterize the microstructure and optical properties of the prepared samples. The results indicated that Ag doping during magnetron sputtering was a feasible method to tune the optical properties of ZnO nanostructures. For the Ag:ZnO nanostructures, the intensity of ultraviolet emission was increased up to three times compared with the pure ones. The detailed PL intensity variation with the increasing temperature is also discussed based on the ionization energy of acceptor in ZnO induced by Ag dopants.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: A myriad of evidence have shown that kidney-yang deficiency syndrome (KYDS) is associated with metabolic disorders of the intestinal microbiota, while TCMs can treat KYDS by regulating gut microbiota metabolism. However, the specific interplay between KYDS and intestinal microbiota, and the intrinsic regulation mechanism of You-gui pill (YGP) on KYDS' gut microbiota remains largely unknown so far. MATERIALS AND METHODS: In the present study, fecal metabonomics combined with 16S rRNA gene sequencing analysis were used to explore the mutual effect between KYDS and intestinal flora, and the intrinsic regulation mechanism of YGP on KYDS's gut microbiota. Rats' feces from control (CON) group, KYDS group and YGP group were collected, and metabolomic analysis was performed using 1H NMR technique combined with multivariate statistical analysis to obtain differential metabolites. Simultaneously, 16S rRNA gene sequencing analysis based on the Illumina HiSeq sequencing platform and ANOVA analysis were used to analyze the composition of the intestinal microbiota in the stool samples and to screen for the significant altered microbiota at the genus level. After that, MetaboAnalyst database and PICRUSt software were apply to conduct metabolic pathway analysis and functional prediction analysis of the screened differential metabolites and intestinal microbiota, respectively. What's more, Pearson correlation analysis was performed on these differential metabolites and gut microbiota. RESULTS: Using fecal metabonomics, KYDS was found to be associated with 21 differential metabolites and seven potential metabolic pathways. These metabolites and metabolic pathways were mainly involved in amino acid metabolism, energy metabolism, methylamine metabolism, bile acid metabolism and urea cycle, and short-chain fatty acid metabolism. Through 16S rRNA gene sequencing analysis, we found that KYDS was related to eleven different intestinal microbiotas. These gut microbiota were mostly involved in amino acid metabolism, energy metabolism, nervous, endocrine, immune and digestive system, lipid metabolism, and carbohydrate metabolism. Combined fecal metabonomics and 16S rRNA gene sequencing analysis, we further discovered that KYDS was primarily linked to three gut microbiotas (i.e. Bacteroides, Desulfovibrio and [Eubacterium]_coprostanoligenes_group) and eleven related metabolites (i.e. deoxycholate, n-butyrate, valine, isoleucine, acetate, taurine, glycine, α-gluconse, ß-glucose, glycerol and tryptophan) mediated various metabolic disorders (amino acid metabolism, energy metabolism, especially methylamine metabolism, bile acid metabolism and urea cycle, short-chain fatty acid metabolism. nervous, endocrine, immune and digestive system, lipid metabolism, and carbohydrate metabolism). YGP, however, had the ability to mediate four kinds of microbes (i.e. Ruminiclostridium_9, Ruminococcaceae_UCG-007, Ruminococcaceae_UCG-010, and uncultured_bacterium_f_Bacteroidales_S24-7_group) and ten related metabolites (i.e. deoxycholate, valine, isoleucine, alanine, citrulline, acetate, DMA, TMA, phenylalanine and tryptophan) mediated amino acid metabolism, especially methylamine metabolism, bile acid metabolism and urea cycle, short-chain fatty acid metabolism, endocrine, immune and digestive system, and lipid metabolism, thereby exerting a therapeutic effect on KYDS rats. CONCLUSION: Overall, our findings have preliminary confirmed that KYDS is closely related to metabolic and microbial dysbiosis, whereas YGP can improve the metabolic disorder of KYDS by acting on intestinal microbiota. Meanwhile, this will lay the foundation for the further KYDS's metagenomic research and the use of intestinal microbiotas as drug targets to treat KYDS.
Assuntos
Fezes/química , Fezes/microbiologia , Microbioma Gastrointestinal , Nefropatias/microbiologia , Deficiência da Energia Yang/microbiologia , Animais , Medicamentos de Ervas Chinesas/uso terapêutico , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Nefropatias/tratamento farmacológico , Masculino , Metaboloma , RNA Ribossômico 16S , Ratos Sprague-Dawley , Análise de Sequência de RNA , Deficiência da Energia Yang/tratamento farmacológicoRESUMO
In this study, systems pharmacology was used to predict the molecular targets of You-gui pill (YGP) and explore the therapeutic mechanism of Kidney-Yang Deficiency Syndrome (KYDS) treated with YGP. On the basis of this, serum samples from control group, KYDS model group and YGP group rats were studied using 1H NMR to verify the results of systems pharmacology from the level of metabonomics. Simultaneously, 1H NMR spectra of serum samples were obtained and statistically assessed using pattern recognition analysis. Biochemical analyses of serums were performed via radioimmunoassays. Furthermore, histopathological studies were conducted on the pituitary, adrenal, and thyroid glands, and testicles of the control, KYDS and YGP rats. Using systems pharmacology to analyze the active components of YGP, 61 active compounds were finally found. These compounds were likely to have an effect on 3177 target proteins and involve 234 pathways. Using metabonomics to analyze serum from KYDS rats treated with YGP, 22 endogenous biomarkers were found. These biomarkers were mainly involved in 10 metabolic pathways. Combining systems pharmacology and metabonomics, we found that the regulation of KYDS was primarily associated with 19 active compounds of 5 Chinese herbal medicines in YGP. These active compounds mainly had an effect on 8 target proteins, including phosphoenolpyruvate carboxykinase, betaine-homocysteine s-methyltransferase 1, alcohol dehydrogenase 1C, etc. These target proteins were primarily involved in 6 overlapping pathways, namely aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, glycine, serine and threonine metabolism, valine, leucine and isoleucine biosynthesis, arginine and proline metabolism, and pyruvate metabolism. In addition, there were 4 non-overlapping pathways, respectively alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, ubiquinone and other terpenoid-quinone biosynthesis, and galactose metabolism. In summary, the therapeutic effects of YGP on KYDS were mainly associated with neuroendocrine regulation, energy metabolism, amino acid metabolism, inflammatory responses, apoptosis, oxidative stress and intestinal flora metabolism. What's more, we also found that YGP possessed the potential to protect liver and kidney function. Our study demonstrated that systems pharmacology and metabonomics methods were novel strategies for the exploration of the mechanisms of KYDS and TCM formulas.
RESUMO
In our study, systems pharmacology was used to predict the molecular targets of Astragalus and Leech, and explore the therapeutic mechanism of type 2 diabetic nephropathy (T2DN) treated with Astragalus and Leech. Simultaneously, to reveal the systemic metabolic changes and biomarkers associated with T2DN, we performed 1H NMR-based metabonomics and multivariate analysis to analyze fecal samples obtained from model T2DN rats. In addition, ELISA kits and histopathological studies were used to examine biochemical parameters and kidney tissue, respectively. Striking differences in the Pearson's correlation of 22 biomarkers and 9 biochemical parameters were also observed among control, T2DN and treated rats. Results of systems pharmacology analysis revealed that 9 active compounds (3,9-di-O-methylnissolin; (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol; hirudin; l-isoleucine; phenylalanine; valine; hirudinoidine A-C) and 9 target proteins (l-serine dehydratase; 3-hydroxyacyl-CoA dehydrogenase; tyrosyl-tRNA synthetase; tryptophanyl-tRNA synthetase; branched-chain amino acid aminotransferase; acetyl-CoA C-acetyltransferase; isovaleryl-CoA dehydrogenase; pyruvate dehydrogenase E1 component alpha subunit; hydroxyacylglutathione hydrolase) of Astragalus and Leech were closely associated with the treatment of T2DN. Using fecal metabonomics analysis, 22 biomarkers were eventually found to be closely associated with the occurrence of T2DN. Combined with systems pharmacology and fecal metabonomics, these biomarkers were found to be mainly associated with 6 pathways, involving amino acid metabolism (leucine, valine, isoleucine, alanine, lysine, glutamate, taurine, phenylalanine, tryptophan); energy metabolism (lactate, succinate, creatinine, α-glucose, glycerol); ketone body and fatty acid metabolism (3-hydroxybutyrate, acetate, n-butyrate, propionate); methylamine metabolism (dimethylamine, trimethylamine); and secondary bile acid metabolism and urea cycle (deoxycholate, citrulline). The underlying mechanisms of action included protection of the liver and kidney, enhancement of insulin sensitivity and antioxidant activity, and improvement of mitochondrial function. To the best of our knowledge, this is the first time that systems pharmacology combined with fecal metabonomics has been used to study T2DN. 6 metabolites (n-butyrate, deoxycholate, propionate, tryptophan, taurine and glycerol) associated with T2DN were newly discovered in fecal samples. These 6 metabolites were mainly derived from the intestinal flora, and related to amino acid metabolism, fatty acid metabolism, and secondary bile acid metabolism. We hope the results of this study could be inspirational and helpful for further exploration of T2DN treatment. Meanwhile, our results highlighted that exploring the biomarkers of T2DN and therapeutic mechanisms of Traditional Chinese Medicine (TCM) formulas on T2DN by combining systems pharmacology and fecal metabonomics methods was a promising strategy.