Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842530

RESUMO

Photocatalytic C2H6-to-C2H4 conversion is very promising, yet it remains a long-lasting challenge due to the high C-H bond dissociation energy of 420 kJ mol-1. Herein, partially oxidized Pdδ+ species anchored on ZnO nanosheets are designed to weaken the C-H bond by the electron interaction between Pdδ+ species and H atoms, with efforts to achieve high-rate and selective C2H6-to-C2H4 conversion. X-ray photoelectron spectra, Bader charge calculations, and electronic localization function demonstrate the presence of partially oxidized Pdδ+ sites, while quasi-in situ X-ray photoelectron spectra disclose the Pdδ+ sites initially adopt and then donate the photoexcited electrons for C2H6 dehydrogenation. In situ electron paramagnetic resonance spectra, in situ Fourier transform infrared spectra, and trapping agent experiments verify C2H6 initially converts to CH3CH2OH via ·OH radicals, then dehydroxylates to CH3CH2· and finally to C2H4, accompanied by H2 production. Density-functional theory calculations elucidate that loading Pd site can lengthen the C-H bond of C2H6 from 1.10 to 1.12 Å, which favors the C-H bond breakage, affirmed by a lowered energy barrier of 0.04 eV. As a result, the optimized 5.87% Pd-ZnO nanosheets achieve a high C2H4 yield of 16.32 mmol g-1 with a 94.83% selectivity as well as a H2 yield of 14.49 mmol g-1 from C2H6 dehydrogenation in 4 h, outperforming all the previously reported photocatalysts under similar conditions.

2.
Chemphyschem ; 25(5): e202300368, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38193665

RESUMO

The goal of photocatalytic CO2 reduction system is to achieve near 100 % selectivity for the desirable product with reasonably high yield and stability. Here, two-dimensional metal-organic frameworks are constructed with abundant and uniform monometallic active sites, aiming to be an emerged platform for efficient and selective CO2 reduction. As an example, water-stable Cu-based metal-organic framework nanoribbons with coordinatively unsaturated single CuII sites are first fabricated, evidenced by X-ray diffraction patterns and X-ray absorption spectroscopy. In situ Fourier-transform infrared spectra and Gibbs free energy calculations unravel the formation of the key intermediate COOH* and CO* is an exothermic and spontaneous process, whereas the competitive hydrogen evolution reaction is endothermic and non-spontaneous, which accounts for the selective CO2 reduction. As a result, in an aqueous solution containing 1 mol L-1 KHCO3 and without any sacrifice reagent, the water-stable Cu-based metal-organic framework nanoribbons exhibited an average CO yield of 82 µmol g-1 h-1 with the selectivity up to 97 % during 72 h cycling test, which is comparable to other reported photocatalysts under similar conditions.

3.
Angew Chem Int Ed Engl ; 62(1): e202215247, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36347791

RESUMO

Herein, we first design a model of reversible redox-switching metal-organic framework single-unit-cell sheets, where the abundant metal single sites benefit for highly selective CO2 reduction, while the reversible redox-switching metal sites can effectively activate CO2 molecules. Taking the synthetic Cu-MOF single-unit-cell sheets as an example, synchrotron-radiation quasi in situ X-ray photoelectron spectra unravel the reversible switching CuII /CuI single sites initially accept photoexcited electrons and then donate them to CO2 molecules, which favors the rate-liming activation into CO2 δ- , verified by in situ FTIR spectra and Gibbs free energy calculations. As an outcome, Cu-MOF single-unit-cell sheets achieve near 100 % selectivity for CO2 photoreduction to CO with a high rate of 860 µmol g-1 h-1 without any sacrifice reagent or photosensitizer, where both the activity and selectivity outperform previously reported photocatalysts evaluated under similar conditions.

4.
J Am Chem Soc ; 144(23): 10446-10454, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640069

RESUMO

CO2 electroreduction to high-energy-density C2+ products is highly attractive, whereas the C2+ selectivity under industrial current densities is still unsatisfying. Here, an anti-swelling anion exchange ionomer (AEI) was first proposed to optimize the local environment for promoting industrial-current-density CO2-to-C2+ electroreduction. Taking the anti-swelling AEI-modified oxide-derived Cu nanosheets as an example, in situ Raman spectroscopy and contact angle measurements revealed that the OH--accumulated -N(CH3)3+ groups and anti-swelling backbone of AEI could synergistically regulate the local pH level and water content. In situ Fourier-transform infrared spectroscopy and theoretical calculations demonstrated that the higher local pH value could lower the energy barrier for the rate-limiting COCO* hydrogenated to COCOH* from 0.08 to 0.04 eV, thereby boosting the generation of C2+ products. Owing to the anti-swelling backbone, the optimized water content of 3.5% could suppress the competing H2 evolution and hence facilitate the proton-electron transfer step for C2+ production. As a result, the anti-swelling AEI-modified oxide-derived Cu nanosheets achieved a C2+ Faradaic efficiency of 85.1% at a current density up to 800 mA cm-2 with a half-cell power conversion efficiency exceeding 50%, outperforming most reported powder catalysts.

5.
Bull Environ Contam Toxicol ; 109(1): 142-148, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35305129

RESUMO

Bauxite residue is generated from alumina production in the alumina refining industry by the Bayer process, which requires a large amount of land resource and causes serious environmental problems. In this paper, a novel recycling strategy is proposed to rehabilitate the land and produce the polyaluminium ferric sulfate (PAFS) and siliceous gypsum byproducts from the bauxite residue. The batch experiments reveal that the maximum Cr(VI) removal efficiency of as-prepared PAFS can reach 95.80% with an initial concentration of 10.41 mg/L. In addition, the non-toxic siliceous gypsum should be an ideal raw material for cement plants. Various characterizations (e.g., SEM, FTIR, and XRD) are employed to reveal the mechanism of synthesis PAFS and their Cr(VI) removal performance. Consequently, this paper provides a deep insight into the utilization of bauxite residue as a resource and gives a new strategy for preparing PAFS and gypsum from bauxite residue.


Assuntos
Óxido de Alumínio , Águas Residuárias , Sulfato de Cálcio , Cromo , Compostos Férricos
6.
Angew Chem Int Ed Engl ; 61(51): e202214490, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36307955

RESUMO

The chemical conversion of CO2 to long-chain chemicals is considered as a highly attractive method to produce value-added organics, while the underlying reaction mechanism remains unclear. By constructing surface vacancy-cluster-mediated solid frustrated Lewis pairs (FLPs), the 100 % atom-economical, efficient chemical conversion of CO2 to dimethyl carbonate (DMC) was realized. By taking CeO2 as a model system, we illustrate that FLP sites can efficiently accelerate the coupling and conversion of key intermediates. As demonstrated, CeO2 with rich FLP sites shows improved reaction activity and achieves a high yield of DMC up to 15.3 mmol g-1 . In addition, by means of synchrotron radiation in situ diffuse reflectance infrared Fourier-transform spectroscopy, combined with density functional theory calculations, the reaction mechanism on the FLP site was investigated systematically and in-depth, providing pioneering insights into the underlying pathway for CO2 chemical conversion to long-chain chemicals.

7.
Ecotoxicol Environ Saf ; 220: 112370, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058673

RESUMO

A 6 weeks pot culture experiment was carried out to investigate the stabilization effects of a modified biochar (BCM) on metals in contaminated soil and the uptake of these metals by wheat seedlings. The results showed that the application of BCM significantly increased the soil fertility, the biomass of wheat seedling roots increased by more than 50%, and soil dehydrogenase (DHA) and catalase (CAT) activities increased by 369.23% and 12.61%, respectively. In addition, with the application of BCM, the diethylenetriaminepentaacetic acid extractable (DTPA-extractable) Cd, Pb, Cu and Zn in soil were reduced from 2.34 to 0.38 mg/kg, from 49.27 to 25.65 mg/kg, from 3.55 mg/kg to below the detection limit and from 4.05 to 3.55 mg/kg, respectively. Correspondingly, the uptake of these metals in wheat roots and shoots decreased by 62.43% and 79.83% for Cd, 73.21% and 66.32% for Pb, 57.98% and 68.92% for Cu, and 40.42% and 43.66% for Zn. Furthermore, BCM application decreased the abundance and alpha diversity of soil bacteria and changed the soil bacterial community structure dramatically. Overall, BCM has great potential for the remediation of metal-contaminated soils, but its long-term impact on soil metals and biota need further research.


Assuntos
Bactérias/efeitos dos fármacos , Carvão Vegetal/farmacologia , Metais Pesados/metabolismo , Plântula/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Triticum/efeitos dos fármacos , Disponibilidade Biológica , Biomassa , Cádmio/metabolismo , Poluição Ambiental , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Microbiologia do Solo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
8.
Ecotoxicol Environ Saf ; 207: 111294, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931971

RESUMO

Heavy metal contamination in soil has attracted great attention worldwide. In situ stabilization has been considered an effective way to remediate soils contaminated by heavy metals. In the present research, a multiple-modified biochar (BCM) was prepared to stabilize Cd and Cu contamination in two different soils: a farmland soil (JYS) and a vegetable soil (ZZS). The results showed that BCM was a porous-like flake material and that modification increased its specific surface area and surface functional groups. The incubation experiment indicated that BCM decreased diethylenetriaminepentaacetic (DTPA)-extractable Cd and Cu by 92.02% and 100.00% for JYS and 90.27% and 100.00% for ZZS, respectively. The toxicity characteristic leaching procedure (TCLP)-extractable Cd and Cu decreased 66.46% and 100.00% for JYS and 46.33% and 100.00% for ZZS, respectively. BCM also reduced the mobility of Cd and Cu in soil and transformed them to more stable fractions. In addition, the application of BCM significantly increased the soil dehydrogenase, organic matter content and available K (p < 0.05). These results indicate that BCM has great potential in the remediation of Cd- and Cu-contaminated soil.


Assuntos
Cádmio/análise , Carvão Vegetal/química , Cobre/análise , Recuperação e Remediação Ambiental/métodos , Poluentes do Solo/análise , Solo/química , Adsorção , China , Propriedades de Superfície
9.
Angew Chem Int Ed Engl ; 60(25): 13840-13846, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33786954

RESUMO

Herein, we first design a fast low-pressure ultraviolet light irradiation strategy for easily regenerating the nearly equivalent surface vacancies. Taking the defective Bi2 O2 CO3 nanosheets as an example, nearly equal amount of oxygen vacancies can be regenerated under UV light irradiation. Synchrotron-radiation quasi in situ X-ray photoelectron spectra disclose the Bi sites in the O-defective Bi2 O2 CO3 nanosheets can act as the highly active sites, which not only help to activate CO2 molecules, but also contribute to stabilizing the rate-limiting COOH* intermediate. Also, in situ Fourier transform infrared spectroscopy and in situ mass spectrometry unravel the UV light irradiation contributes to accelerating CO desorption process. As a result, the O-defective Bi2 O2 CO3 nanosheets achieve a stability up to 2640 h over 110 cycling tests and a high evolution rate of 275 µmol g-1 h-1 for visible-light-driven CO2 reduction to CO.

10.
Bioconjug Chem ; 30(7): 1880-1888, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30789706

RESUMO

While the solution assembly of amphiphilic copolymers has been studied extensively, the assembly of DNA-containing copolymers is only recently emerging as a promising new area. DNA, a natural hydrophilic biopolymer that is highly predictable in its hybridization characteristics, brings to the field several useful and unique properties including monodispersity, the ability to functionalize in a site-specific manner, and programmability with Watson-Crick base pairing. The inclusion of DNA as a segment in the copolymer not only adds to the current knowledge base in the block copolymer assembly but also creates new modalities of assembly that have already led to novel and technologically useful structures. In this Review, we discuss recent progress in the self-assembly of DNA-containing copolymers, including assemblies driven by hydrophobicity via amphiphilic constructs, programmed assemblies mediated by DNA hybridization, and assemblies involving both of these interactions.


Assuntos
DNA/química , Polímeros/química , Pareamento de Bases , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico
11.
Can J Microbiol ; 65(9): 629-641, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31112660

RESUMO

Penicillium chrysogenum F1 is very efficient in bioleaching heavy metals from the soil and is used for that purpose. We found that F1 can extract 19.8 mg Cd, Cu, Pb, and Zn from 2.5 g soil; the total heavy metals' bioleaching ratio was 60.4%. In this study, the bioleaching mechanism was investigated by means of metabonomics; different metabolite ions were screened (relative standard deviation >30%) and analyzed using clustering, univariate and multivariate analysis. Statistical analyses via Volcano Plot, principal component analysis, and partial least square discriminant analysis models revealed a difference between Ctrl 7 (the controls cultured and sampled on day 7) and Ctrl 15 (the controls cultured and sampled on day 15). Samp 15 (the samples cultured with heavy-metal-contaminated soil) was significantly different from Ctrl 7 and Ctrl 15. Analysis of the different ions demonstrated that the glucose catabolism pathways of glycolysis and the tricarboxylic acid (TCA) cycle were enhanced, and glucose anabolism through the pentose phosphate pathway was inhibited during bioleaching. At the same time, the metabolism of glutathione was also downregulated. Therefore, the catabolism of glucose was unaffected by the addition of heavy-metal-contaminated soil, and increasing glucose is beneficial to catabolism. The extraction of metals is mainly attributed to the metabolites of the TCA cycle.


Assuntos
Metabolômica , Metais Pesados/metabolismo , Penicillium chrysogenum/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Poluição Ambiental , Metais Pesados/análise , Solo/química
12.
Water Sci Technol ; 78(10): 2171-2182, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30629545

RESUMO

In this study, a novel method based on the magnetic Fe/C crosslinked nanoparticles (MNZVI/CNTs-OH) is reported for the effective removal of Cr(VI) in aqueous solutions. Parameters that influence the effectiveness of the nanoparticles, such as pH, temperature, reaction time, and particle dosage, was analyzed. It was found that MNZVI/CNTs-OH particles exhibit significantly higher activity toward Cr(VI) removal than bare NZVI, carbon nanotubes (CNTs), and other synthetic nanomaterials. Under optimized conditions, the removal efficiency of Cr(VI) by MNZVI/CNTs-OH is up to 98% with an initial contaminant concentration of 50 mg/L, and chromium content in the residue up to 48 mg/g. Physical characterizations, including Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and TG-TD measurements, provide insights into the working mechanism of Cr(VI) purification. Our findings suggest that immobilization of MNZVI onto carbon nanotubes increase the covalent bond property, while crosslinked nanoparticles (NPs) provide the electron transfer passage from the NZVI surface and improves the dispersity of the MNZVI, thus enhancing the performance. These results demonstrate the potential of the MNZVI/CNTs-OH nanoparticles for the rapid and efficient treatment of Cr(VI)-containing wastewater.


Assuntos
Cromo/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Cromo/análise , Ferro/química , Nanopartículas , Poluentes Químicos da Água/análise
13.
Proc Natl Acad Sci U S A ; 110(27): 11023-8, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23776207

RESUMO

ArfGAP With Coiled-Coil, Ankyrin Repeat And PH Domains 4 (ACAP4) is an ADP-ribosylation factor 6 (ARF6) GTPase-activating protein essential for EGF-elicited cell migration. However, how ACAP4 regulates membrane dynamics and curvature in response to EGF stimulation is unknown. Here, we show that phosphorylation of the N-terminal region of ACAP4, named the Bin, Amphiphysin, and RSV161/167 (BAR) domain, at Tyr34 is necessary for EGF-elicited membrane remodeling. Domain structure analysis demonstrates that the BAR domain regulates membrane curvature. EGF stimulation of cells causes phosphorylation of ACAP4 at Tyr34, which subsequently promotes ACAP4 homodimer curvature. The phospho-mimicking mutant of ACAP4 demonstrates lipid-binding activity and tubulation in vitro, and ARF6 enrichment at the membrane is associated with ruffles of EGF-stimulated cells. Expression of the phospho-mimicking ACAP4 mutant promotes ARF6-dependent cell migration. Thus, the results present a previously undefined mechanism by which EGF-elicited phosphorylation of the BAR domain controls ACAP4 molecular plasticity and plasma membrane dynamics during cell migration.


Assuntos
Membrana Celular/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/fisiologia , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sequência de Aminoácidos , Linhagem Celular , Movimento Celular/genética , Fator de Crescimento Epidérmico/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fosforilação , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
14.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727380

RESUMO

Antibiotic abuse, particularly the excessive use of tetracycline (TC), a drug with significant environmental risk, has gravely harmed natural water bodies and even posed danger to human health. In this study, a three-dimensional self-supported MoS2/MXene nanohybrid with an expanded layer spacing was synthesized via a facile one-step hydrothermal method and used to activate peroxydisulfate (PDS) for the complete degradation of TC. The results showed that a stronger •OH signal was detected in the aqueous solution containing MoS2/MXene, demonstrating a superior PDS activation effect compared to MoS2 or Ti3C2TX MXene alone. Under the conditions of a catalyst dosage of 0.4 g/L, a PDS concentration of 0.4 mM, and pH = 5.0, the MoS2/MXene/PDS system was able to fully eliminate TC within one hour, which was probably due to the presence of several reactive oxygen species (ROS) (•OH, SO4•-, and O2•-) in the system. The high TC degradation efficiency could be maintained under the influence of various interfering ions and after five cycles, indicating that MoS2/MXene has good anti-interference and reusability performance. Furthermore, the possible degradation pathways were proposed by combining liquid chromatography-mass spectrometry (LC-MS) data and other findings, and the mechanism of the MoS2/MXene/PDS system on the degradation process of TC was elucidated by deducing the possible mechanism of ROS generation in the reaction process. All of these findings suggest that the MoS2/MXene composite catalyst has strong antibiotic removal capabilities with a wide range of application prospects.

15.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473590

RESUMO

Transition metals and their oxide compounds exhibit excellent chemical reactivity; however, their easy agglomeration and high cost limit their catalysis applications. In this study, an interpolation structure of a Myriophyllum verticillatum L. biochar-supported Mn/Mg composite (Mn/Mg@MV) was prepared to degrade triphenyl phosphate (TPhP) from wastewater through the activating periodate (PI) process. Interestingly, the Mn/Mg@MV composite showed strong radical self-producing capacities. The Mn/Mg@MV system degraded 93.34% TPhP (pH 5, 10 µM) within 150 min. The experimental results confirmed that the predominant role of IO3· and the auxiliary ·OH jointly contributed to the TPhP degradation. In addition, the TPhP pollutants were degraded to various intermediates and subsequent Mg mineral phase mineralization via mechanisms like interfacial processes and radical oxidation. DFT theoretical calculations further indicated that the synergy between Mn and Mg induced the charge transfer of the carbon-based surface, leading to the formation of an ·OH radical-enriched surface and enhancing the multivariate interface process of ·OH, IO3, and Mn(VII) to TPhP degradation, resulting in the further formation of Mg PO4 mineralization.

16.
Adv Mater ; 36(23): e2314209, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331431

RESUMO

Electrochemically reconstructed Cu-based catalysts always exhibit enhanced CO2 electroreduction performance; however, it still remains ambiguous whether the reconstructed Cu vacancies have a substantial impact on CO2-to-C2+ reactivity. Herein, Cu vacancies are first constructed through electrochemical reduction of Cu-based nanowires, in which high-angle annular dark-field scanning transmission electron microscopy image manifests the formation of triple-copper-vacancy associates with different concentrations, confirmed by positron annihilation lifetime spectroscopy. In situ attenuated total reflection-surface enhanced infrared absorption spectroscopy discloses the triple-copper-vacancy associates favor *CO adsorption and fast *CO dimerization. Moreover, density-functional-theory calculations unravel the triple-copper-vacancy associates endow the nearby Cu sites with enriched and disparate local charge density, which enhances the *CO adsorption and reduces the CO-CO coupling barrier, affirmed by the decreased *CO dimerization energy barrier by 0.4 eV. As a result, the triple-copper-vacancy associates confined in Cu nanowires achieve a high Faradaic efficiency of over 80% for C2+ products in a wide current density range of 400-800 mA cm-2, outperforming most reported Cu-based electrocatalysts.

17.
Nanomaterials (Basel) ; 13(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37368267

RESUMO

Microwave-absorbing materials have attracted extensive attention due to the development of electronic countermeasures. In this study, novel nanocomposites with core-shell structures based on the core of Fe-Co nanocrystals and the shell of furan methylamine (FMA)-modified anthracite coal (Coal-F) were designed and fabricated. The Diels-Alder (D-A) reaction of Coal-F with FMA creates a large amount of aromatic lamellar structure. After the high-temperature treatment, the modified anthracite with a high degree of graphitization showed an excellent dielectric loss, and the addition of Fe and Co effectively enhanced the magnetic loss of the obtained nanocomposites. In addition, the obtained micro-morphologies proved the core-shell structure, which plays a significant role in strengthening the interface polarization. As a result, the combined effect of the multiple loss mechanism promoted a remarkable improvement in the absorption of incident electromagnetic waves. The carbonization temperatures were specifically studied through a setting control experiment, and 1200 °C was proved to be the optimum parameter to obtain the best dielectric loss and magnetic loss of the sample. The detecting results show that the 10 wt.% CFC-1200/paraffin wax sample with a thickness of 5 mm achieves a minimum reflection loss of -41.6 dB at a frequency of 6.25 GHz, indicating an excellent microwave absorption performance.

18.
Adv Mater ; 35(31): e2302538, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37120752

RESUMO

The slow charge dynamics and large activation energy of CO2 severely hinder the efficiency of CO2 photoreduction. Defect engineering is a well-established strategy, while the function of common zero-dimensional defects is always restricted to promoting surface adsorption. In this work, a gradient layer of tungsten vacancies with a thickness of 3-4 nm is created across Bi2 WO6 nanosheets. This gradient layer enables the formation of an inner-to-outer tandem homojunction with an internal electric field, which provides a strong driving force for the migration of photoelectrons from the bulk to the surface. Meanwhile, W vacancies change the coordination environment around O and W atoms, leading to an alteration in the basic sites and the mode of CO2 adsorption from weak/strong adsorption to moderate adsorption, which ultimately decreases the formation barrier of the key intermediate *COOH and facilitates the conversion thermodynamics for CO2 . Without any cocatalyst and sacrificial reagent, W-vacant Bi2 WO6 shows an outstanding photocatalytic CO2 reduction performance with a CO production rate of 30.62 µmol g-1  h-1 , being one of the best catalysts in similar reaction systems. This study reveals that gradient vacancies as a new type of defect will show huge potential in regulating charge dynamics and catalytic reaction thermodynamics.

19.
Bioprocess Biosyst Eng ; 35(5): 843-50, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22179413

RESUMO

A hexavalent chromium [Cr(VI)] reducing bacterial strain was isolated from chromium-containing slag. It was identified as Pannonibacter phragmitetus based on physiological, biochemical characteristics and 16S rRNA gene sequence analysis. This bacterium displayed great Cr(VI) reduction capability. The Cr(VI) could be completely removed in 24 h under anaerobic condition when the initial concentration was 1,917 mg L(-1), with the maximum reduction rate of 562.8 mg L(-1) h(-1). The Cr(VI) reduction rate increased with the increase of Cr(VI) concentration. P. phragmitetus was able to use many carbon sources such as lactose, fructose, glucose, pyruvate, citrate, formate, lactate, NADPH and NADH as electron donors, among which the lactate had the greatest power to promote the reduction process. Zn(2+), Cd(2+) and Ni(2+) inhibited, while Cu(2+), Pb(2+), Mn(2+) and Co(2+) stimulated the reduction. The optimum pH and temperature for reduction were 9.0 and 30 °C, respectively. The results indicated that this strain had great potential for application in the bioremediation of chromate-polluted soil and water systems.


Assuntos
Cromo/metabolismo , Rhodobacteraceae/crescimento & desenvolvimento , Rhodobacteraceae/metabolismo , Anaerobiose/fisiologia , Concentração de Íons de Hidrogênio , Oxirredução , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-36293698

RESUMO

Nowadays, with the rapid development of industry and agriculture, heavy metal pollution is becoming more and more serious, mainly deriving from natural and man-made sources [...].


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Biodegradação Ambiental , Poluentes do Solo/análise , Metais Pesados/análise , Agricultura , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA