Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Langmuir ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024040

RESUMO

Given the limitations of micromechanical experiments and molecular dynamics simulations, the normal compression process of clay aggregates was simulated under different vertical pressures (P), numbers of particles, loading methods, and environments by a Gay-Berne potential model. On the basis of the variations of particle orientation and the distribution of stacks, the evolution of deformation and stresses was elucidated. The results showed that the effects of the pressure level and loading environment on the deformation were significant. In the range of 0.1-10 MPa, the changes in the void ratio were essentially the evolution of the distribution of stacks determined by attractive short-range van der Waals interactions. The deformation under constant pressure was larger than that under step loading. Because the interactions between clay particles were mainly controlled by mechanical force when in the range of 40-100 MPa, the void ratios under various loading conditions were consistent. It was also found that changes in three-dimensional stresses during compression were dependent on those of the distribution of stacks. In the vacuum environment, owing to the lateral movement of interlocked small stacks, the horizontal stress decreased. The lateral pressure coefficients (k) were greater in an atmospheric environment because the anisotropic particle orientation was relatively less obvious. In the range of 10-100 MPa, when the loading path became longer, k was similar in vacuum but became smaller in an atmosphere. If the initial loading pressure was increased, the number of large stacks sharply increased and the anisotropy was significant in a vacuum environment, which was less prone to lateral expansion. In contrast, more consistent particle arrangements were maintained in an atmosphere. This work will be conducive to explaining experimental observations of long-term ripening.

2.
J Stroke Cerebrovasc Dis ; 33(7): 107731, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657831

RESUMO

BACKGROUND: Several studies report that radiomics provides additional information for predicting hematoma expansion in intracerebral hemorrhage (ICH). However, the comparison of diagnostic performance of radiomics for predicting revised hematoma expansion (RHE) remains unclear. METHODS: The cohort comprised 312 consecutive patients with ICH. A total of 1106 radiomics features from seven categories were extracted using Python software. Support vector machines achieved the best performance in both the training and validation datasets. Clinical factors models were constructed to predict RHE. Receiver operating characteristic curve analysis was used to assess the abilities of non-contrast computed tomography (NCCT) signs, radiomics features, and combined models to predict RHE. RESULTS: We finally selected the top 21 features for predicting RHE. After univariate analysis, 4 clinical factors and 5 NCCT signs were selected for inclusion in the prediction models. In the training and validation dataset, radiomics features had a higher predictive value for RHE (AUC = 0.83) than a single NCCT sign and expansion-prone hematoma. The combined prediction model including radiomics features, clinical factors, and NCCT signs achieved higher predictive performances for RHE (AUC = 0.88) than other combined models. CONCLUSIONS: NCCT radiomics features have a good degree of discrimination for predicting RHE in ICH patients. Combined prediction models that include quantitative imaging significantly improve the prediction of RHE, which may assist in the risk stratification of ICH patients for anti-expansion treatments.


Assuntos
Hemorragia Cerebral , Progressão da Doença , Hematoma , Valor Preditivo dos Testes , Humanos , Masculino , Hemorragia Cerebral/diagnóstico por imagem , Hematoma/diagnóstico por imagem , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Retrospectivos , Reprodutibilidade dos Testes , Interpretação de Imagem Radiográfica Assistida por Computador , Máquina de Vetores de Suporte , Tomografia Computadorizada por Raios X , Prognóstico , Fatores de Risco , Idoso de 80 Anos ou mais
3.
J Xray Sci Technol ; 32(4): 953-971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820061

RESUMO

BACKGROUND: The Chinese population ranks among the highest globally in terms of stroke prevalence. In the clinical diagnostic process, radiologists utilize computed tomography angiography (CTA) images for diagnosis, enabling a precise assessment of collateral circulation in the brains of stroke patients. Recent studies frequently combine imaging and machine learning methods to develop computer-aided diagnostic algorithms. However, in studies concerning collateral circulation assessment, the extracted imaging features are primarily composed of manually designed statistical features, which exhibit significant limitations in their representational capacity. Accurately assessing collateral circulation using image features in brain CTA images still presents challenges. METHODS: To tackle this issue, considering the scarcity of publicly accessible medical datasets, we combined clinical data with imaging data to establish a dataset named RadiomicsClinicCTA. Moreover, we devised two collateral circulation assessment models to exploit the synergistic potential of patients' clinical information and imaging data for a more accurate assessment of collateral circulation: data-level fusion and feature-level fusion. To remove redundant features from the dataset, we employed Levene's test and T-test methods for feature pre-screening. Subsequently, we performed feature dimensionality reduction using the LASSO and random forest algorithms and trained classification models with various machine learning algorithms on the data-level fusion dataset after feature engineering. RESULTS: Experimental results on the RadiomicsClinicCTA dataset demonstrate that the optimized data-level fusion model achieves an accuracy and AUC value exceeding 86%. Subsequently, we trained and assessed the performance of the feature-level fusion classification model. The results indicate the feature-level fusion classification model outperforms the optimized data-level fusion model. Comparative experiments show that the fused dataset better differentiates between good and bad side branch features relative to the pure radiomics dataset. CONCLUSIONS: Our study underscores the efficacy of integrating clinical and imaging data through fusion models, significantly enhancing the accuracy of collateral circulation assessment in stroke patients.


Assuntos
Circulação Colateral , Angiografia por Tomografia Computadorizada , Humanos , Angiografia por Tomografia Computadorizada/métodos , Circulação Colateral/fisiologia , Masculino , Feminino , Algoritmos , Pessoa de Meia-Idade , Idoso , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Aprendizado de Máquina , Circulação Cerebrovascular/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Angiografia Cerebral/métodos
4.
Comput Biol Med ; 171: 108005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340437

RESUMO

Medical image segmentation is a crucial topic in medical image processing. Accurately segmenting brain tumor regions from multimodal MRI scans is essential for clinical diagnosis and survival prediction. However, similar intensity distributions, variable tumor shapes, and fuzzy boundaries pose severe challenges for brain tumor segmentation. Traditional segmentation networks based on UNet struggle to establish explicit long-range dependencies from the feature space due to the limitations of the CNN receptive field. This is particularly crucial for dense prediction tasks such as brain tumor segmentation. Recent works have incorporated the powerful global modeling capability of Transformer into UNet to achieve more precise segmentation results. Nevertheless, these methods encounter some issues: (1) the global information is often modeled by simply stacking Transformer layers for a specific module, resulting in high computational complexity and underutilization of the potential of the UNet architecture; (2) the rich boundary information of tumor subregions in multi-scale features is often overlooked. Motivated by these challenges, we propose an advanced fusion of Transformer with UNet by reexamining the core three parts (encoder, bottleneck, and skip connections). Firstly, we introduce a CNN-Transformer module in the encoder to replace the traditional CNN module, enabling the capture of deep spatial dependencies from input images. To address high-level semantic information, we incorporate a computationally efficient spatial-channel attention layer in the bottleneck for global interaction, highlighting important semantic features from the encoder path output. For irregular lesions, we fuse the multi-scale features from the encoder output and the decoder features in the skip connections by calculating cross-attention. This adaptive querying of valuable information from multi-scale features enhances the boundary localization ability of the decoder path and suppresses redundant features with low correlation. Compared to existing methods, our model further enhances the learning capacity of the overall UNet architecture while maintaining low computational complexity. Experimental results on the BraTS2018 and BraTS2020 datasets for brain tumor segmentation tasks demonstrate that our model achieves comparable or superior results compared to recent CNN or Transformer-based models. The average DSC and HD95 on the two datasets are 0.854, 6.688, and 0.862, 5.455 respectively. At the same time, our model achieves optimal segmentation of Enhancing tumors, showcasing the effectiveness of our method. Our code will be made publicly available at https://github.com/wzhangck/ETUnet.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Aprendizagem , Semântica
5.
Phys Med Biol ; 69(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38211308

RESUMO

Objective.Stroke is a highly lethal condition, with intracranial vessel occlusion being one of its primary causes. Intracranial vessel occlusion can typically be categorized into four types, each requiring different intervention measures. Therefore, the automatic and accurate classification of intracranial vessel occlusions holds significant clinical importance for assessing vessel occlusion conditions. However, due to the visual similarities in shape and size among different vessels and variations in the degree of vessel occlusion, the automated classification of intracranial vessel occlusions remains a challenging task. Our study proposes an automatic classification model for large vessel occlusion (LVO) based on the difference information between the left and right hemispheres.Approach.Our approach is as follows. We first introduce a dual-branch attention module to learn long-range dependencies through spatial and channel attention, guiding the model to focus on vessel-specific features. Subsequently, based on the symmetry of vessel distribution, we design a differential information classification module to dynamically learn and fuse the differential information of vessel features between the two hemispheres, enhancing the sensitivity of the classification model to occluded vessels. To optimize the feature differential information among similar vessels, we further propose a novel cooperative learning loss function to minimize changes within classes and similarities between classes.Main results.We evaluate our proposed model on an intracranial LVO data set. Compared to state-of-the-art deep learning models, our model performs optimally, achieving a classification sensitivity of 93.73%, precision of 83.33%, accuracy of 89.91% and Macro-F1 score of 87.13%.Significance.This method can adaptively focus on occluded vessel regions and effectively train in scenarios with high inter-class similarity and intra-class variability, thereby improving the performance of LVO classification.


Assuntos
Encéfalo , Diagnóstico por Computador , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/classificação , Encéfalo/patologia , Circulação Cerebrovascular
6.
Front Neurosci ; 18: 1329718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660224

RESUMO

Purpose: To develop deep learning models based on four-dimensional computed tomography angiography (4D-CTA) images for automatic detection of large vessel occlusion (LVO) in the anterior circulation that cause acute ischemic stroke. Methods: This retrospective study included 104 LVO patients and 105 non-LVO patients for deep learning models development. Another 30 LVO patients and 31 non-LVO patients formed the time-independent validation set. Four phases of 4D-CTA (arterial phase P1, arterial-venous phase P2, venous phase P3 and late venous phase P4) were arranged and combined and two input methods was used: combined input and superimposed input. Totally 26 models were constructed using a modified HRNet network. Assessment metrics included the areas under the curve (AUC), accuracy, sensitivity, specificity and F1 score. Kappa analysis was performed to assess inter-rater agreement between the best model and radiologists of different seniority. Results: The P1 + P2 model (combined input) had the best diagnostic performance. In the internal validation set, the AUC was 0.975 (95%CI: 0.878-0.999), accuracy was 0.911, sensitivity was 0.889, specificity was 0.944, and the F1 score was 0.909. In the time-independent validation set, the model demonstrated consistently high performance with an AUC of 0.942 (95%CI: 0.851-0.986), accuracy of 0.902, sensitivity of 0.867, specificity of 0.935, and an F1 score of 0.901. The best model showed strong consistency with the diagnostic efficacy of three radiologists of different seniority (k = 0.84, 0.80, 0.70, respectively). Conclusion: The deep learning model, using combined arterial and arterial-venous phase, was highly effective in detecting LVO, alerting radiologists to speed up the diagnosis.

7.
Quant Imaging Med Surg ; 14(2): 2049-2059, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38415132

RESUMO

Background: White matter (WM) lesions can be classified into contrast enhancement lesions (CELs), iron rim lesions (IRLs), and non-iron rim lesions (NIRLs) based on different pathological mechanism in relapsing-remitting multiple sclerosis (RRMS). The application of radiomics established by T2-FLAIR to classify WM lesions in RRMS is limited, especially for 3-class classification among CELs, IRLs, and NIRLs. Methods: A total of 875 WM lesions (92 CELs, 367 IRLs, 416 NIRLs) were included in this study. The 2-class classification was only performed between IRLs and NIRLs. For the 2- and 3-class classification tasks, all the lesions were randomly divided into training and testing sets with a ratio of 8:2. We used least absolute shrinkage and selection operator (LASSO), reliefF algorithm, and mutual information (MI) for feature selection, then eXtreme gradient boosting (XGBoost), random forest (RF), and support vector machine (SVM) were used to establish discrimination models. Finally, the area under the curve (AUC), accuracy, sensitivity, specificity, and precision were used to evaluate the performance of the models. Results: For the 2-class classification model, LASSO classifier with RF model showed the best discrimination performance with the AUC of 0.893 (95% CI: 0.838-0.942), accuracy of 0.813, sensitivity of 0.833, specificity of 0.781, and precision of 0.851. However, the 3-class classification model of LASSO with XGBoost displayed the highest performance with the AUC of 0.920 (95% CI: 0.887-0.950), accuracy of 0.796, sensitivity of 0.839, specificity of 0.881, and precision of 0.846. Conclusions: Radiomics models based on T2-FLAIR images have the potential for discriminating among CELs, IRLs, and NIRLs in RRMS.

8.
Quant Imaging Med Surg ; 14(1): 251-263, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223098

RESUMO

Background: The mutational status of alpha-thalassemia X-linked intellectual disability (ATRX) is an important indicator for the treatment and prognosis of high-grade gliomas, but reliable ATRX testing currently requires invasive procedures. The objective of this study was to develop a clinical trait-imaging fusion model that combines preoperative magnetic resonance imaging (MRI) radiomics and deep learning (DL) features with clinical variables to predict ATRX status in isocitrate dehydrogenase (IDH)-mutant high-grade astrocytoma. Methods: A total of 234 patients with IDH-mutant high-grade astrocytoma (120 ATRX mutant type, 114 ATRX wild type) from 3 centers were retrospectively analyzed. Radiomics and DL features from different regions (edema, tumor, and the overall lesion) were extracted to construct multiple imaging models by combining different features in different regions for predicting ATRX status. An optimal imaging model was then selected, and its features and linear coefficients were used to calculate an imaging score. Finally, a fusion model was developed by combining the imaging score and clinical variables. The performance and application value of the fusion model were evaluated through the comparison of receiver operating characteristic curves, the construction of a nomogram, calibration curves, decision curves, and clinical application curves. Results: The overall hybrid model constructed with radiomics and DL features from the overall lesion was identified as the optimal imaging model. The fusion model showed the best prediction performance with an area under curve of 0.969 in the training set, 0.956 in the validation set, and 0.949 in the test set as compared to the optimal imaging model (0.966, 0.916, and 0.936, respectively) and clinical model (0.677, 0.641, 0.772, respectively). Conclusions: The clinical trait-imaging fusion model based on preoperative MRI could effectively predict the ATRX mutation status of individuals with IDH-mutant high-grade astrocytoma and has the potential to help patients through the development of a more effective treatment strategy before treatment.

9.
Front Plant Sci ; 14: 1328603, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312354

RESUMO

Chimonanthus praecox is a famous traditional flower in China with high ornamental value. It has numerous varieties, yet its classification is highly disorganized. The distinctness, uniformity, and stability (DUS) test enables the classification and nomenclature of various species; thus, it can be used to classify the Chimonanthus varieties. In this study, flower traits were quantified using an automatic system based on pattern recognition instead of traditional manual measurement to improve the efficiency of DUS testing. A total of 42 features were quantified, including 28 features in the DUS guidelines and 14 new features proposed in this study. Eight algorithms were used to classify wintersweet, and the random forest (RF) algorithm performed the best when all features were used. The classification accuracy of the outer perianth was the highest when the features of the different parts were used for classification. A genetic algorithm was used as the feature selection algorithm to select a set of 22 reduced core features and improve the accuracy and efficiency of the classification. Using the core feature set, the classification accuracy of the RF model improved to 99.13%. Finally, K-means was used to construct a pedigree cluster tree of 23 varieties of wintersweet; evidently, wintersweet was clustered into a single class, which can be the basis for further study of genetic relationships among varieties. This study provides a novel method for DUS detection, variety identification, and pedigree analysis.

10.
Insights Imaging ; 14(1): 223, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129708

RESUMO

OBJECTIVE: This study aims to compare the feasibility and effectiveness of automatic deep learning network and radiomics models in differentiating low tumor stroma ratio (TSR) from high TSR in pancreatic ductal adenocarcinoma (PDAC). METHODS: A retrospective analysis was conducted on a total of 207 PDAC patients from three centers (training cohort: n = 160; test cohort: n = 47). TSR was assessed on hematoxylin and eosin-stained specimens by experienced pathologists and divided as low TSR and high TSR. Deep learning and radiomics models were developed including ShuffulNetV2, Xception, MobileNetV3, ResNet18, support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and logistic regression (LR). Additionally, the clinical models were constructed through univariate and multivariate logistic regression. Kaplan-Meier survival analysis and log-rank tests were conducted to compare the overall survival time between different TSR groups. RESULTS: To differentiate low TSR from high TSR, the deep learning models based on ShuffulNetV2, Xception, MobileNetV3, and ResNet18 achieved AUCs of 0.846, 0.924, 0.930, and 0.941, respectively, outperforming the radiomics models based on SVM, KNN, RF, and LR with AUCs of 0.739, 0.717, 0.763, and 0.756, respectively. Resnet 18 achieved the best predictive performance. The clinical model based on T stage alone performed worse than deep learning models and radiomics models. The survival analysis based on 142 of the 207 patients demonstrated that patients with low TSR had longer overall survival. CONCLUSIONS: Deep learning models demonstrate feasibility and superiority over radiomics in differentiating TSR in PDAC. The tumor stroma ratio in the PDAC microenvironment plays a significant role in determining prognosis. CRITICAL RELEVANCE STATEMENT: The objective was to compare the feasibility and effectiveness of automatic deep learning networks and radiomics models in identifying the tumor-stroma ratio in pancreatic ductal adenocarcinoma. Our findings demonstrate deep learning models exhibited superior performance compared to traditional radiomics models. KEY POINTS: • Deep learning demonstrates better performance than radiomics in differentiating tumor-stroma ratio in pancreatic ductal adenocarcinoma. • The tumor-stroma ratio in the pancreatic ductal adenocarcinoma microenvironment plays a protective role in prognosis. • Preoperative prediction of tumor-stroma ratio contributes to clinical decision-making and guiding precise medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA