Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 629(8014): 1091-1099, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750363

RESUMO

The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.


Assuntos
Adansonia , Filogenia , Adansonia/classificação , Adansonia/genética , Biodiversidade , Conservação dos Recursos Naturais , Ecologia , Espécies em Perigo de Extinção , Evolução Molecular , Genoma de Planta/genética , Madagáscar , Dinâmica Populacional , Elevação do Nível do Mar
2.
Small ; 20(40): e2401995, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38818678

RESUMO

Upgrading thermosetting polymer waste and harvesting unwanted electromagnetic energy are of great significance in solving environmental pollution and energy shortage problems. Herein, inspired by the glass-blowing art, a spontaneous, controllable, and scalable strategy is proposed to prepare hollow carbon materials by inner blowing and outside blocking. Specifically, hierarchically neuron-like hollow carbon materials (HCMSs) with various sizes are fabricated from melamine-formaldehyde sponge (MS) waste. Benefiting from the synergistic of the hollow "cell body" and the connected "protrusions" networks, HCMSs reveal superior electromagnetic absorption performance with a strong reflection loss of -54.9 dB, electromagnetic-heat conversion ability with a high conversion efficiency of 34.4%, and efficient energy storage performance in supercapacitor. Furthermore, a multifunctional device integrating electromagnetic-heat-electrical energy conversion is designed, and its feasibility is proved by experiments and theoretical calculations. The integrated device reveals an output voltage of 34.5 mV and a maximum output power of 0.89 µW with electromagnetic radiation for 60 s. This work provides a novel solution to recycle polymer waste, electromagnetic energy, and unwanted thermal energy.

3.
New Phytol ; 241(2): 623-631, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37715492

RESUMO

Information on seed persistence and seedling emergence from the soil seed bank is critical for understanding species coexistence and predicting community dynamics. However, quantifying seed persistence in the soil is challenging; thus, its association with other life-history traits is poorly known on a broad scale. Using germination phenology for 349 species in a 42-yr experiment, we quantified the persistence-emergence correlations and their associations with intrinsic regeneration traits using Bayesian phylogenetic multilevel models. We showed no trade-off between seed persistence and seedling emergence. Physically dormant seeds were more persistent but exhibited lower emergence than nondormant seeds. Monocarpic species had both higher persistence and emergence than polycarpic species. Seed mass posed a marginal proxy for persistence, while emergence almost doubled from the smallest to the largest seeds. This study challenges the traditional assumption and is the first demonstration of noncorrelation between persistence and emergence, probably owing to the complexity of regenerative strategies. Species with short persistence and low emergence would be the most vulnerable for in situ conservation. Our analyses of this unique, long-term dataset provide a strong incentive for further experimental studies and a rich data resource for future syntheses.


Assuntos
Germinação , Plântula , Teorema de Bayes , Filogenia , Sementes , Solo
4.
Ann Bot ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38908008

RESUMO

BACKGROUND: The evolutionary success of flowering plants is associated with the vast diversity of their reproductive structures. Despite recent progress in understanding angiosperm-wide trends of floral structure and evolution, a synthetic view of the diversity in seed form and function across angiosperms is lacking. SCOPE: Here we present a roadmap to synthesise the diversity of seed forms in extant angiosperms, relying on the morphospace concept, i.e. a mathematical representation which relates multiple traits and describes the realised morphologies. We provide recommendations on how to broaden the range of measurable traits beyond mass, by using key morphological traits representative of the embryo, endosperm, and seed coat but also fruit attributes (e.g., dehiscence, fleshiness). These key traits were used to construct and analyse a morphospace to detect evolutionary trends and gain insight into how morphological traits relate to seed functions. Finally, we outline challenges and future research directions, combining the morphospace with macroevolutionary comparative methods to underline the drivers that gave rise to the diversity of observed seed forms. CONCLUSIONS: We conclude that this multidimensional approach has the potential, although still untapped, to improve our understanding of covariation among reproductive traits, and further elucidate angiosperm reproductive biology as a whole.

5.
Glob Chang Biol ; 29(3): 841-855, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36272096

RESUMO

Climate warming is changing plant sexual reproduction, having consequences for species distribution and community dynamics. However, the magnitude and direction of plant reproductive efforts (e.g., number of flowers) and success (e.g., number and mass of fruits or seeds) in response to warming have not been well-characterized. Here, we generated a global dataset of simulated warming experiments, consisting of 477 pairwise comparisons for 164 terrestrial species. We found evidence that warming overall decreased fruit number and increased seed mass, but little evidence that warming influenced flower number, fruit mass, or seed number. The warming effects on seed mass were regulated by the pollination type, and insect-pollinated plants exhibited a stronger response to warming than wind-pollinated plants. We found strong evidence that warming increased the mass of seeds for the nondominant species but no evidence of this for the dominant species. There was no evidence that phylogenetic relatedness explained the effects of warming on plant reproductive effort and success. In addition, the effects of warming on flowering onset negatively related to the responses in terms of the number of fruits and seeds to warming, revealing a cascading effect of plant reproductive development. These findings provide the first quantification of the response of terrestrial plant sexual reproduction to warming and suggest that plants may increase their fitness by producing heavier seeds under a warming climate.


Assuntos
Clima , Frutas , Filogenia , Sementes , Polinização/fisiologia , Reprodução , Plantas , Flores
6.
Ecotoxicol Environ Saf ; 262: 115215, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37421785

RESUMO

Southwestern China has the largest geological phosphorus-rich mountain in the world, which is seriously degraded by mining activities. Understanding the trajectory of soil microbial recovery and identifying the driving factors behind such restoration, as well as conducting corresponding predictive simulations, can be instrumental in facilitating ecological rehabilitation. Here, high-throughput sequencing and machine learning-based approaches were employed to investigate restoration chronosequences under four restoration strategies (spontaneous re-vegetation with or without topsoil; artificial re-vegetation with or without the addition of topsoil) in one of the largest and oldest open-pit phosphate mines worldwide. Although soil phosphorus (P) is extremely high here (max = 68.3 mg/g), some phosphate solubilizing bacteria and mycorrhiza fungi remain as the predominant functional types. Soil stoichiometry ratios (C:P and N:P) closely relate to the bacterial variation, but soil P content contributes less to microbial dynamics. Meanwhile, as restoration age increases, denitrifying bacteria and mycorrhizal fungi significantly increased. Significantly, based on partial least squares path analysis, it was found that the restoration strategy is the primary factor that drives soil bacterial and fungal composition as well as functional types through both direct and indirect effects. These indirect effects arise from factors such as soil thickness, moisture, nutrient stoichiometry, pH, and plant composition. Moreover, its indirect effects constitute the main driving force towards microbial diversity and functional variation. Using a hierarchical Bayesian model, scenario analysis reveals that the recovery trajectories of soil microbes are contingent upon changes in restoration stage and treatment strategy; inappropriate plant allocation may impede the recovery of the soil microbial community. This study is helpful for understanding the dynamics of the restoration process in degraded phosphorus-rich ecosystems, and subsequently selecting more reasonable recovery strategies.

7.
Ecol Lett ; 24(7): 1522-1525, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33942462

RESUMO

A literature synthesis concluded that small mammals have the greatest impact on post-dispersal removal of intermediate-sized seeds (Dylewski et al. 2020). However, this study failed to consider the duration of seed exposure to predators. Re-analyses of the corrected dataset revealed only a weak effect of seed mass on seed removal.


Assuntos
Mamíferos , Dispersão de Sementes , Animais , Comportamento Alimentar
8.
Ecol Lett ; 23(11): 1635-1642, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32881372

RESUMO

Seed movement and delayed germination have long been thought to represent alternative risk-spreading strategies, but current evidence covers limited scales and yields mixed results. Here we present the first global-scale test of a negative correlation between dispersal and dormancy. The result demonstrates a strong and consistent pattern that species with dormant seeds have reduced spatial dispersal, also in the context of life-history traits such as seed mass and plant lifespan. Long-lived species are more likely to have large, non-dormant seeds that are dispersed far. Our findings provide robust support for the theoretical prediction of a dispersal trade-off between space and time, implying that a joint consideration of risk-spreading strategies is imperative in studying plant life-history evolution. The bet-hedging patterns in the dispersal-dormancy correlation and the associated reproductive traits have implications for biodiversity conservation, via prediction of which plant groups would be most impacted in the changing era.


Assuntos
Dispersão de Sementes , Germinação , Dormência de Plantas , Sementes
9.
New Phytol ; 228(2): 770-777, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32463920

RESUMO

Seed coat and seed reserve show substantial mass variation, play different roles in plant life strategies and are shaped by different selective forces. However, remarkably little is known about the macroevolution of the relative allocation in seed components and its influence on important ecophysiological processes. Using phylogenetic comparative methods and evolutionary modelling approaches, we modelled mass changes in seed components along individual lineages for 940 species and compared the patterns across seed desiccation responses. Seed component allocation was driven primarily by changes in reserve mass rather than coat mass, as evolutionary rates in reserve mass significantly outpaced those in coat mass. Although the scaling patterns between reserve mass and coat mass were similar across desiccation responses, desiccation-sensitive seeds allocated more and evolved faster in reserve compared to desiccation-tolerant seeds. The findings emphasize the relative importance of reserve to coat in the evolution of plant reproductive strategies, revealing potential ecological advantages gained by enlarged reserve. As the first quantification of the evolutionary tempo and mode of seed component mass, our study allows a detailed interpretation of evolutionary pathways underlying seed storage behaviours and advances the understanding of the evolution of desiccation sensitivity in seeds.


Assuntos
Dessecação , Sementes , Filogenia
10.
Am J Bot ; 107(3): 436-444, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32072626

RESUMO

PREMISE: Intraspecific variation in diaspore characteristics could affect various aspects of plant performance at the population, individual plant, and seed levels. We quantified variation in dispersal traits in a wind-dispersed annual, Geropogon hybridus (Asteraceae), focusing on continuous morphological traits of dispersive diaspores and their relationships to dispersal ability and seedling emergence. METHODS: We measured the morphological traits, terminal velocity, and seedling emergence of 1140 seeds from 10 populations in two successive years. We assessed the variation in traits among three hierarchical levels of organization and between years, and quantified their effects on diaspore terminal velocity and seedling emergence. RESULTS: Diaspore morphological traits varied substantially at the population, plant, and diaspore levels. Variables of pappus geometry, especially pappus width and pappus opening angle, were consistent between years and were found to be the best predictors of diaspore terminal velocity and seedling emergence. There was a significant negative relationship between diaspore terminal velocity and seedling emergence. CONCLUSIONS: The intraspecific variation in diaspore traits is sufficiently large to substantially allow a dispersal-dormancy trade-off of individual diaspores. Our results support the hypothesis that traits of dispersive diaspores evolve in concert to select for increased dispersal potential, and provide an avenue to predict plant offspring performance through simply measured traits.


Assuntos
Asteraceae , Dispersão de Sementes , Plântula , Sementes , Vento
11.
Ecol Lett ; 22(6): 954-961, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30891916

RESUMO

Despite the importance of seed dispersal in a plant's life cycle, global patterns in seed dispersal distance have seldom been studied. This paper presents the first geographically and taxonomically broad quantification of the latitudinal gradient in seed dispersal distance. Although there is substantial variation in the seed dispersal distances of different species at a given latitude, seeds disperse on average more than an order of magnitude further at the equator than towards the poles. This pattern is partially explained by plant life-history traits that simultaneously associate with seed dispersal distance and latitude, including dispersal mode and plant height. The extended seed shadow of tropical plants could increase the distance between conspecific individuals. This could facilitate species coexistence and contribute to the maintenance of high plant diversity in tropical communities. The latitudinal gradient in dispersal distance also has implications for species' persistence in the face of habitat fragmentation and climate change.


Assuntos
Características de História de Vida , Dispersão de Sementes , Ecossistema , Plantas , Sementes
12.
Am J Bot ; 106(3): 371-376, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30866038

RESUMO

PREMISE OF THE STUDY: Numerous studies have treated the mass of a whole seed as an integrated unit, although the components seed kernel and seed coat play different roles and are subject to different evolutionary selection pressures. In this study, we provided the first global-scale quantification of the relative biomass investments in seed coats and seed kernels. We tested the following hypotheses: there is a negative allometry between seed kernel mass and seed coat mass, and therefore, seed coat ratio (SCR) is negatively correlated with seed mass. METHODS: We compiled a global-scale data set from the published literature, including 680 plant species from 420 genera and 108 families. The relationships between seed components were quantified using standardized major axis regression, ordinary least squares regression, and phylogenetic independent analyses. KEY RESULTS: We found a weak but significantly negative allometry between seed kernel mass and seed coat mass, which resulted in a negative relationship between seed mass and SCR. Similar results were found after accounting for the phylogeny. CONCLUSIONS: The finding that smaller seeds invest more in protective tissues but less in stored reserves may explain the general prediction that larger seeds suffer greater predation than smaller seeds. Furthermore, this weak allometry may also explain, at least in part, why so many studies failed to identify a clear pattern of the effect of seed mass on many ecological processes. Our study suggests that the allometry between the two seed components must be considered when evaluating the ecological significance and evolutionary history of seed mass.


Assuntos
Evolução Biológica , Biomassa , Fenômenos Fisiológicos Vegetais , Sementes/fisiologia , Filogenia
13.
Int J Biometeorol ; 63(5): 607-616, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-29130120

RESUMO

The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.


Assuntos
Mudança Climática , Hevea/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Ascomicetos , China , Hevea/microbiologia , Modelos Teóricos , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Estações do Ano , Temperatura , Clima Tropical
15.
J Chem Ecol ; 42(2): 85-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26879680

RESUMO

The invasive clonal plant Wedelia trilobata contains higher levels of ent-kaurane diterpenes, which are precursors of gibberellins (GAs), and higher rates of clonal growth than its native congener W. chinensis in invaded habitats. We hypothesized that the higher levels of endogenous GAs facilitate greater ramet growth in W. trilobata compared with W. chinensis. We quantified endogenous levels of GA1+3 in the two species and compared their growth responses to the changes of endogenous and exogenous GA3 by using short-term and long-term hydroponics experiments. After a period of homogeneous cultivation, levels of endogenous GA1+3 were higher in W. trilobata than in W. chinensis. The reduction of endogenous GAs repressed the emergence of adventitious roots and the growth of W. trilobata in the initial cultivation stage, and inhibited its shoot elongation and biomass. Levels of endogenous GA1+3 were positively correlated with the length of shoots and adventitious roots of W. trilobata. Adventitious roots of W. trilobata also emerged earlier and grew faster when treated with exogenous GA3. In contrast, exogenous GA3 treatment inhibited the length of adventitious roots in W. chinensis, and levels of endogenous GA1+3 did not correlate with shoot or adventitious root length. Our study suggests that GAs accelerate the rapid clonal growth of W. trilobata, more than that of its native congener W. chinensis, illustrating the relationship between plant hormones and the clonal growth of invasive plants. These findings are important for understanding the mechanisms associated with the invasiveness of clonal plants and their potential management.


Assuntos
Giberelinas/fisiologia , Espécies Introduzidas , Wedelia/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Wedelia/crescimento & desenvolvimento
16.
Langmuir ; 31(25): 6971-80, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26061590

RESUMO

A novel and facile method was developed for morphological controlling of self-assemblies prepared by crystallization induced self-assembly of crystalline-coil copolymer depending on the combination effect of crystallization and micellization. The morphological evolution of the self-assemblies of alternating poly(p-dioxanone)-block-poly(ethylene glycol) (PPDO-PEG) multiblock copolymer prepared by different solvent mixing methods in aqueous solution were investigated. "Chrysanthemum"-like and "star anise"-like self-assemblies were obtained at different rates of solvent mixing. The results suggested gradually change in solvent quality (slowly dropping water into DMF solution) leaded to a hierarchical micellization-crystallization process of core-forming PPDO blocks, and flake-like particles were formed at the initial stage of crystallization. Meanwhile, crystallization induced micellization process occurred when solvent quality changed drastically. Shuttle-like particles, which have much smaller size than those of flake-like particles, were formed at the initial stage of crystallization when quickly injecting water into DMF solution of the copolymer. Therefore, owing to the different changing rate of solvent quality, which may result in different combination effect of crystallization and micellization during self-assembly of the copolymer, PPDO-PEG self-assemblies with different hierarchical morphology in nano scale could be obtained.

17.
Iran J Med Sci ; 40(1): 63-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25648186

RESUMO

Hepatitis C Virus (HCV) encodes two envelope glycoproteins, E1 and E2. Our previous work selected a specific aptamer ZE2, which could bind to E2 with high affinity, with a great potential for developing new molecular probes as an early diagnostic reagents or therapeutic drugs targeting HCV. In this study, the binding sites between E2 and aptamer ZE2 were further explored. E2 was truncated to 15 peptides (P1 to P15) and these peptides were used to detect the affinity with ZE2 by ELISA respectively. The peptide with high affinity was then further truncated, detected and compared with six kinds of HCV genotypes. The basic amino acid in 500 aa bound to ZE2 with high affinity, while acidic amino acid in 501 aa reduced the reaction between E2 and ZE2. The results showed the 500 aa and 501 aa of E2 were the key sites that bound to ZE2.

18.
Macromol Rapid Commun ; 35(16): 1450-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25048154

RESUMO

A novel and facile bottom-up strategy for preparing core-shell nanofibers with selectively localized carbon nanotubes is developed using hierarchical composite micelles of crystalline-coil copolymer and carbon nanotubes as the building blocks. An amphiphilic di-block copolymer of poly (p-dioxanone) (PPDO) and PEG (polyethylene glycol) functionalized with pyrene moieties at the chain ends of PPDO blocks (Py-PPDO-b-PEG) is designed for constructing composite micelles with multiwalled carbon nanotubes (MWCNTs). The self-assembly of Py-PPDO-b-PEG and MWCNTs is co-induced by the crystallization of PPDO blocks and the π-π stacking interactions between pyrene moieties and MWCNTs, resulting in composite micelles with "shish kebab"-like nanostructure. A mixture of composite micelles and polyvinyl alcohol (PVA) water solution is then used as the spinning solution for preparing electrospun nanofibers. The morphologies of the nanofibers with different composition are investigated by SEM and TEM. The results suggest that the MWCNTs selectively localized in the core of the nanofibers of MWCNTs/Py-PPDO-b-PEG/PVA. The alignment and interfusion of composite micelles during the formation of nanofibers may confine the carbon nanotubes in the hydrophobic core region. In contrast, the copolymer without pyrene moieties cannot form composite micelles, thus these nanofibers show selective localization of MWCNTs in the PVA shell region.


Assuntos
Micelas , Nanofibras/química , Nanotubos de Carbono/química , Cristalização , Dioxanos/química , Interações Hidrofóbicas e Hidrofílicas , Nanofibras/ultraestrutura , Polietilenoglicóis/química , Polímeros/síntese química , Polímeros/química , Álcool de Polivinil/química , Pirenos/química , Água/química
19.
J Mater Chem B ; 11(14): 3164-3175, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36938684

RESUMO

For typical biodegradable polymers, their overall performance almost declines exponentially to the degradation degree, which inevitably leads to a dilemma between the requirements of service life and retention time in the environment (both in vitro and in vivo). It is a great challenge to develop a biodegradable polymeric device with relatively stable performance in service while rapidly degrading out of service. Herein, we demonstrate an effective strategy to control degradation of biodegradable polymers in stages by constructing separated bicontinuous microphases with very different microphase degradation rates. First, polyurethane copolymers (PCL-b-CrP-U) containing two blocks, i.e., semicrystalline poly(ε-caprolactone) (PCL) blocks and amorphous random copolymer blocks (CrP) based on ε-CL and p-dioxanone (PDO), were synthesized. The microscopic morphology of PCL-b-CrP-U is investigated by an alkali-accelerated degradation experiment, which also demonstrates that the chain cleavage-induced crystallization during degradation resulted in a self-reinforcement by forming degradation residues with a scaffold-like morphology. The tensile test shows that PCL-b-CrP-U has excellent mechanical properties (1500% of elongation at break, a tensile strength of about 7.5 MPa, and an elastic modulus of 40.0 MPa). The degradation experiments with artificial pancreatic juice as a working medium reveal that PCL-b-CrP-U samples containing relatively high PDO units exhibit a three-stage degradation, i.e. an induction stage, a steady degradation stage and an accelerated degradation stage. The CrP phase preferentially hydrolyzes to form some microchannels due to its amorphous nature and relatively high hydrophilicity, effectively accelerating the entry of water and enzymes into the inner parts of the sample. Meanwhile, at this stage, those originally amorphous PCL segments gradually crystalize owing to their enhanced chain mobility induced by the chain cleavage, forming a "scaffold"-like structure, which effectively reinforces the sample to resist the damage from external force and therefore guarantees a relatively stable mechanical performance of PCL-b-CrP-U during service. With the further depletion of the CrP phase, the intermediate "scaffold"-like structure is also very beneficial to accelerate the degradation of residues owing to its large specific surface area, which is expected to be beneficial for preventing long-term retention of the implantation devices.


Assuntos
Materiais Biocompatíveis , Poliuretanos , Materiais Biocompatíveis/química , Poliésteres/química , Polímeros/química , Módulo de Elasticidade
20.
Carbohydr Polym ; 275: 118713, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742438

RESUMO

Chitin, an abundant, biodegradable, and biocompatible polysaccharide, is one of the most ideal eco-friendly alternatives to petroleum-based plastics. However, the applications of chitin-based materials are hindered by their low processability and brittleness induced by strong hydrogen bonds. Herein, a tensile-induced orientation and hydrogen bond reconstruction strategy was developed to fabricate a chitin nanowhiskers/poly(vinyl alcohol) composite film with high strength and toughness. After stretching and hydrogen bond reconstruction, the tensile strength and elongation at break of the composite film increased from 38.6 to 115.2 MPa and 9.37% to 40.7%, respectively. Furthermore, strengthening and toughening mechanisms were also studied, which were attributed to the effects of the intra-layer orientation and interlayer sliding, respectively.


Assuntos
Quitina/química , Ligação de Hidrogênio , Tamanho da Partícula , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA