RESUMO
The immunological mechanisms underlying chronic colitis are poorly understood. T follicular helper (TFH) cells are critical in helping B cells during germinal center reactions. In a T cell transfer colitis model, a lymphoid structure composed of mature dendritic cells (DCs) and TFH cells was found within T cell zones of colonic lymphoid follicles. TFH cells were required for mature DC accumulation, the formation of DC-T cell clusters and colitis development. Moreover, DCs promoted TFH cell differentiation, contributing to colitis development. A lineage-tracing analysis showed that, following migration to the lamina propria, TFH cells transdifferentiated into long-lived pathogenic TH1 cells, promoting colitis development. Our findings have therefore demonstrated the reciprocal regulation of TFH cells and DCs in colonic lymphoid follicles, which is critical in chronic colitis pathogenesis.
Assuntos
Diferenciação Celular , Colite , Células Dendríticas , Células T Auxiliares Foliculares , Animais , Células Dendríticas/imunologia , Colite/imunologia , Colite/patologia , Células T Auxiliares Foliculares/imunologia , Camundongos , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Células Th1/imunologia , Colo/imunologia , Colo/patologia , Camundongos Knockout , Centro Germinativo/imunologia , Camundongos TransgênicosRESUMO
Spermatogenesis is a biological process within the testis that produces haploid spermatozoa for the continuity of species. Sertoli cells are somatic cells in the seminiferous epithelium that orchestrate spermatogenesis. Cyclic reorganization of the Sertoli cell actin cytoskeleton is vital for spermatogenesis, but the underlying mechanism remains largely unclear. Here, we report that the RNA-binding protein PTBP1 controls Sertoli cell actin cytoskeleton reorganization by programming alternative splicing of actin cytoskeleton regulators. This splicing control enables ectoplasmic specializations, the actin-based adhesion junctions, to maintain the blood-testis barrier and support spermatid transport and transformation. Particularly, we show that PTBP1 promotes actin bundle formation by repressing the inclusion of exon 14 of Tnik, a kinase present at the ectoplasmic specialization. Our results thus reveal a novel mechanism wherein Sertoli cell actin cytoskeleton dynamics are controlled post-transcriptionally by utilizing functionally distinct isoforms of actin regulatory proteins, and PTBP1 is a critical regulatory factor in generating such isoforms.
RESUMO
Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.
Assuntos
Técnicas de Transferência de Genes , Genes Bacterianos , Microfluídica , Bifidobacterium longum/genética , Eletroporação/métodos , Escherichia coli/genética , Técnicas de Transferência de Genes/instrumentação , Microfluídica/métodos , Transformação Bacteriana/genéticaRESUMO
SignificanceAerosol-cloud interaction affects the cooling of Earth's climate, mostly by activation of aerosols as cloud condensation nuclei that can increase the amount of sunlight reflected back to space. But the controlling physical processes remain uncertain in current climate models. We present a lidar-based technique as a unique remote-sensing tool without thermodynamic assumptions for simultaneously profiling diurnal aerosol and water cloud properties with high resolution. Direct lateral observations of cloud properties show that the vertical structure of low-level water clouds can be far from being perfectly adiabatic. Furthermore, our analysis reveals that, instead of an increase of liquid water path (LWP) as proposed by most general circulation models, elevated aerosol loading can cause a net decrease in LWP.
RESUMO
The C-H hydroxylation of the pyridine C3 position is a highly desirable transformation but remains a great challenge due to the inherent electronic properties of this heterocycle core which bring difficulties in chemical reactivity and regioselectivity. Herein we present an efficient method for formal C3 selective hydroxylation of pyridines via photochemical valence isomerization of pyridine N-oxides. This metal-free transformation features operational simplicity and compatibility with a diverse array of functional groups, and the resulting hydroxylated products are amenable to further elaboration to synthetically useful building blocks. The synthetic utility of this strategy is further demonstrated in the effective late-stage functionalization of pyridine-containing medicinally relevant molecules and versatile derivatizations of 3-pyridinols.
RESUMO
Aryl amines are one of the most common moieties in biologically active molecules, and approximately 37% of drug candidates contain aromatic amines. Recent advancements in medicinal chemistry, coined "escaping from flatland", have led to a greater focus on accessing highly functionalized C (sp3)-rich amines to improve the physicochemical and pharmacokinetic properties of compounds. This article presents a modular and operationally straightforward three-component alkyl Petasis boron-Mannich (APBM) reaction that utilizes ubiquitous starting materials, including amines, aldehydes, and alkyl boronates. By adaptation of this transformation to high-throughput experimentation (HTE), it offers rapid access to an array of diverse C(sp3)-rich complex amines, amenable for rapid identification of drug candidates.
RESUMO
Aseptic loosening of prostheses is a highly researched topic, and wear particle-induced macrophage polarization is a significant cause of peri-prosthetic osteolysis. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) promote M2 polarization and inhibit M1 polarization of macrophages. However, clinical application problems such as easy clearance and lack of targeting exist. Exosomes derived from M2 macrophages (M2-Exos) have good biocompatibility, immune escape ability, and natural inflammatory targeting ability. M2-Exos and BMSCs-Exos fused exosomes (M2-BMSCs-Exos) are constructed, which targeted the osteolysis site and exerted the therapeutic effect of both exosomes. M2-BMSCs-Exos achieved targeted osteolysis after intravenous administration inhibiting M1 polarization and promoting M2 polarization to a greater extent at the targeted site, ultimately playing a key role in the prevention and treatment of aseptic loosening of prostheses. In conclusion, M2-BMSCs-Exos can be used as a precise and reliable molecular drug for peri-prosthetic osteolysis. Fused exosomes M2-BMSCs-Exos were originally proposed and successfully prepared, and exosome fusion technology provides a new theoretical basis and solution for the clinical application of therapeutic exosomes.
Assuntos
Exossomos , Células-Tronco Mesenquimais , Osteólise , Humanos , Administração Intravenosa , MacrófagosRESUMO
ConspectusCross-coupling methods are the most widely used synthetic methods in medicinal chemistry. Existing reactions are dominated by methods such as amide coupling and arylation reactions that form bonds to sp2-hybridized carbon atoms and contribute to the formation of "flat" molecules. Evidence that three-dimensional structures often have improved physicochemical properties for pharmaceutical applications has contributed to growing demand for cross-coupling methods with sp3-hybridized reaction partners. Substituents attached to sp3 carbon atoms are intrinsically displayed in three dimensions. These considerations have led to efforts to establish reactions with sp3 cross-coupling partners, including alkyl halides, amines, alcohols, and carboxylic acids. As C(sp3)-H bonds are much more abundant that these more conventional coupling partners, we have been pursuing C(sp3)-H cross-coupling reactions that achieve site-selectivity, synthetic utility, and scope competitive with conventional coupling reactions.In this Account, we outline Cu-catalyzed oxidative cross-coupling reactions of benzylic C(sp3)-H bonds with diverse nucleophilic partners. These reactions commonly use N-fluorobenzenesulfonimide (NFSI) as the oxidant. The scope of reactivity is greatly improved by using a "redox buffer" that ensures that the Cu catalyst is available in the proper redox state to promote the reaction. Early precedents of catalytic Cu/NFSI oxidative coupling reactions, including C-H cyanation and arylation, did not require a redox buffer, but reactions with other nucleophiles, such as alcohols and azoles, were much less effective under similar conditions. Mechanistic studies show that some nucleophiles, such as cyanide and arylboronic acids, promote in situ reduction of CuII to CuI, contributing to successful catalytic turnover. Poor reactivity was observed with nucleophiles, such as alcohols, that do not promote CuII reduction in the same manner. This insight led to the identification of sacrificial reductants, termed "redox buffers", that support controlled generation of CuI during the reactions and enable successful benzylic C(sp3)-H cross-coupling with diverse nucleophiles. Successful reactions include those that feature direct coupling of (hetero)benzylic C-H substrates with coupling partners (alcohols, azoles) and sequential C(sp3)-H functionalization/coupling reactions. The latter methods feature generation of a synthetic linchpin that can undergo subsequent reaction with a broad array of nucleophiles. For example, halogenation/substitution cascades afford benzylic amines, (thio)ethers, and heterodiarylmethane derivatives, and an isocyanation/amine-addition sequence generates diverse benzylic ureas.Collectively, these Cu-catalyzed (hetero)benzylic C(sp3)-H cross-coupling reactions rapidly access diverse molecules. Analysis of their physicochemical and topological properties highlights the "drug-likeness" and enhanced three-dimensionality of these products relative to existing bioactive molecules. This consideration, together with the high benzylic C-H site-selectivity and the broad scope of reactivity enabled by the redox buffering strategy, makes these C(sp3)-H cross-coupling methods ideally suited for implementation in high-throughput experimentation platforms to explore novel chemical space for drug discovery and related applications.
RESUMO
Gelatin polymers made from partially degraded collagen are important biomaterials, but their in-situ analysis suffers from uncontrollable covalent labelling and poor spatial-temporal imaging resolution. Herein, three tetrazolate-tagged tetraphenylethylene fluorophores (TPE-TAs) are introduced for practical fluorogenic labelling of gelatin in aqueous phase and hydrogels. These probes with aggregation-induced emission characteristics offer negligible background and elicit turn-on fluorescence by simply mixing with the gelatin in aqueous phase, giving a detection limit of 0.15â mg/L over a linear dynamic range up to 100â mg/L. This method does not work for collagens and causes minimal interference with gelatin properties. Mechanistic studies reveal a key role for multivalent electrostatic interactions between the abundant basic residues in gelatin (e. g., lysine, hydroxylysine, arginine) and anionic tetrazolate moieties of the lipophilic fluorophore synergistically in spatially rigid macromolecular encapsulation to achieve fluorogenic labelling. The AIE strategy by forming non-covalent fluorophore-gelatin complexes was developed for novel hydrogels that exhibited reversible fluorescence in response to dynamic microstructural changes in the hydrogel scaffold upon salting-in/out treatments, and enabled high spatial-temporal imaging of the fiber network in lyophilized samples. This work may open up avenues for in-situ imaging analysis and evaluation of gelatin-based biomaterials during processes such as inâ vivo degradation and mineralization.
Assuntos
Corantes Fluorescentes , Gelatina , Hidrogéis , Gelatina/química , Hidrogéis/química , Corantes Fluorescentes/química , Água/química , Polímeros/química , Estilbenos/química , Materiais Biocompatíveis/química , Tetrazóis/químicaRESUMO
BACKGROUND: While previous studies have primarily focused on Glucose transporter type 1 (GLUT1) related glucose metabolism signaling, we aim to discover if GLUT1 promotes tumor progression through a non-metabolic pathway. METHODS: The RNA-seq and microarray data were comprehensively analyzed to evaluate the significance of GLUT1 expression in lung adenocarcinoma (LUAD). The cell proliferation, colony formation, invasion, and migration were used to test GLUT1 's oncogenic function. Co-immunoprecipitation and mass spectrum (MS) were used to uncover potential GLUT1 interacting proteins. RNA-seq, DIA-MS, western blot, and qRT-PCR to probe the change of gene and cell signaling pathways. RESULTS: We found that GLUT1 is highly expressed in LUAD, and higher expression is related to poor patient survival. GLUT1 knockdown caused a decrease in cell proliferation, colony formation, migration, invasion, and induced apoptosis in LUAD cells. Mechanistically, GLUT1 directly interacted with phosphor-epidermal growth factor receptor (p-EGFR) and prevented EGFR protein degradation via ubiquitin-mediated proteolysis. The GLUT1 inhibitor WZB117 can increase the sensitivity of LUAD cells to EGFR-tyrosine kinase inhibitors (TKIs) Gefitinib. CONCLUSIONS: GLUT1 expression is higher in LUAD and plays an oncogenic role in lung cancer progression. Combining GLUT1 inhibitors and EGFR-TKIs could be a potential therapeutic option for LUAD treatment.
Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Receptores ErbB , Transportador de Glucose Tipo 1 , Neoplasias Pulmonares , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Fosforilação , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Ligação Proteica , Apoptose , Estabilidade ProteicaRESUMO
Breast cancer bone metastasis is a terminal-stage disease and is typically treated with radiotherapy and chemotherapy, which causes severe side effects and limited effectiveness. To improve this, Sonodynamic therapy may be a more safe and effective approach in the future. Bacterial outer membrane vesicles (OMV) have excellent immune-regulating properties, including modulating macrophage polarization, promoting DC cell maturation, and enhancing anti-tumor effects. Combining OMV with Sonodynamic therapy can result in synergetic anti-tumor effects. Therefore, we constructed multifunctional nanoparticles for treating breast cancer bone metastasis. We fused breast cancer cell membranes and bacterial outer membrane vesicles to form a hybrid membrane (HM) and then encapsulated IR780-loaded PLGA with HM to produce the nanoparticles, IR780@PLGA@HM, which had tumor targeting, immune regulating, and Sonodynamic abilities. Experiments showed that the IR780@PLGA@HM nanoparticles had good biocompatibility, effectively targeted to 4T1 tumors, promoted macrophage type I polarization and DC cells activation, strengthened anti-tumor inflammatory factors expression, and presented the ability to effectively kill tumors both in vitro and in vivo, which showed a promising therapeutic effect on breast cancer bone metastasis. Therefore, the nanoparticles we constructed provided a new strategy for effectively treating breast cancer bone metastasis.
Assuntos
Membrana Externa Bacteriana , Neoplasias Ósseas , Neoplasias da Mama , Camundongos Endogâmicos BALB C , Feminino , Animais , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Camundongos , Neoplasias Ósseas/secundário , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Terapia por Ultrassom/métodos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Células RAW 264.7 , Membrana Celular , Nanopartículas Multifuncionais/químicaRESUMO
Green and low-carbon are the keywords of the 2022 Beijing Winter Olympic Games (WOG) and the core of sustainable development. Beijing's P M 2.5 and C O 2 emissions attracted worldwide attention during WOG. However, the complex emission sources and frequently changing weather patterns make it impossible for a single monitoring approach to meet the high-resolution, full-coverage monitoring requirements. Therefore, we proposed an active-passive remote sensing fusion method to address this issue. The haze layer height (HLH) was first retrieved from vertical aerosol profiles measured by our high-spectral-resolution lidar located near Olympic venues, which provides new insights into the nonuniform boundary layer and the residual aerosol aloft above it. Second, we developed a bootstrap aggregating (bagging) method that assimilates the lidar-based HLH, satellite-based AOD, and meteorological data to estimate the hourly P M 2.5 with 1 km resolution. The P M 2.5 at Beijing region, Bird's Nest, and Yanqing venues during WOG was 23.00±18.33, 22.91±19.48, and 16.33±10.49µg/m 3, respectively. Third, we also derived the C O 2 enhancements, C O 2 spatial gradients resulting from human activities, and annual growth rate (AGR) to estimate the performance of carbon emission management in Beijing. Based on the top-down method, the results showed an average C O 2 enhancement of 1.62 ppm with an annual decline rate of 2.92 ppm. Finally, we compared the monitoring data with six other international cities. The results demonstrated that Beijing has the largest P M 2.5 annual decline rate of 7.43µg/m 3, while the C O 2 AGR is 1.46 ppm and keeps rising, indicating Beijing is still on its way to carbon peaking and needs to strive for carbon neutrality.
RESUMO
BACKGROUND: The ambitious expansion of social health insurance in China has played a crucial role in preventing and alleviating poverty caused by illness. However, there is no government-sponsored health insurance program specifically for younger children and inequities are more pronounced in healthcare utilization, medical expenditure, and satisfaction in some households with severely ill children. This study assessed the effectiveness of child health insurance in terms of alleviating poverty caused by illness. METHODS: Data were collected from two rounds of follow-up surveys using the China Family Panel Studies 2016 and 2018 child questionnaires to investigate the relationship between child health insurance and household medical impoverishment (MI). Impoverishing health expenditure (IHE) and catastrophic health expenditure (CHE) were measured to quantify "poverty due to illness" in terms of absolute and relative poverty, respectively. Propensity score matching with the difference-in-differences (PSM-DID) method, robustness tests, and heterogeneity analysis were conducted to address endogeneity issues. RESULTS: Social health insurance for children significantly reduced household impoverishment due to illness. Under the shock of illness, the incidences of IHE and CHE were significantly lower in households with insured children. The poverty alleviation mechanism transmitted by children enrolled in social health insurance was primarily driven by hospitalization reimbursements and the proportion of out-of-pocket medical payments among the total medical expenditure for children. CONCLUSIONS: Children's possession of social health insurance significantly reduced the likelihood of household poverty due to illness. The poverty-reducing effect of social medical insurance is most significant in rural areas, low-income families, no-left-behind children, and infants. Targeted poverty alleviation strategies for marginalized groups and areas would ensure the equity and efficiency of health system reforms, contributing to the goal of universal health insurance coverage in China.
Assuntos
Gastos em Saúde , Pobreza , Humanos , China , Pré-Escolar , Lactente , Gastos em Saúde/estatística & dados numéricos , Feminino , Masculino , Seguro Saúde/estatística & dados numéricos , Criança , Características da Família , Inquéritos e Questionários , Recém-Nascido , Serviços de Saúde da Criança/estatística & dados numéricos , Serviços de Saúde da Criança/economiaRESUMO
Myelin, the structure that surrounds and insulates neuronal axons, is an important component of the central nervous system. The visualization of the myelinated fibers in brain tissues can largely facilitate the diagnosis of myelin-related diseases and understand how the brain functions. However, the most widely used fluorescent probes for myelin visualization, such as Vybrant DiD and FluoroMyelin, have strong background staining, low-staining contrast, and low brightness. These drawbacks may originate from their self-quenching properties and greatly limit their applications in three-dimensional (3D) imaging and myelin tracing. Chemical probes for the fluorescence imaging of myelin in 3D, especially in optically cleared tissue, are highly desirable but rarely reported. We herein developed a near-infrared aggregation-induced emission (AIE)-active probe, PM-ML, for high-performance myelin imaging. PM-ML is plasma membrane targeting with good photostability. It could specifically label myelinated fibers in teased sciatic nerves and mouse brain tissues with a high-signal-to-background ratio. PM-ML could be used for 3D visualization of myelin sheaths, myelinated fibers, and fascicles with high-penetration depth. The staining is compatible with different brain tissue-clearing methods, such as ClearT and ClearT2 The utility of PM-ML staining in demyelinating disease studies was demonstrated using the mouse model of multiple sclerosis. Together, this work provides an important tool for high-quality myelin visualization across scales, which may greatly contribute to the study of myelin-related diseases.
Assuntos
Encéfalo/diagnóstico por imagem , Corantes Fluorescentes , Imageamento Tridimensional , Bainha de Mielina , Nervo Isquiático/diagnóstico por imagem , Animais , CamundongosRESUMO
Human-computer interaction (HCI) with screens through gestures is a pivotal method amidst the digitalization trend. In this work, a gesture recognition method is proposed that combines multi-band spectral features with spatial characteristics of screen-reflected light. Based on the method, a red-green-blue (RGB) three-channel spectral gesture recognition system has been developed, composed of a display screen integrated with narrowband spectral receivers as the hardware setup. During system operation, emitted light from the screen is reflected by gestures and received by the narrowband spectral receivers. These receivers at various locations are tasked with capturing multiple narrowband spectra and converting them into light-intensity series. The availability of multi-narrowband spectral data integrates multidimensional features from frequency and spatial domains, enhancing classification capabilities. Based on the RGB three-channel spectral features, this work formulates an RGB multi-channel convolutional neural network long short-term memory (CNN-LSTM) gesture recognition model. It achieves accuracies of 99.93% in darkness and 99.89% in illuminated conditions. This indicates the system's capability for stable operation across different lighting conditions and accurate interaction. The intelligent gesture recognition method can be widely applied for interactive purposes on various screens such as computers and mobile phones, facilitating more convenient and precise HCI.
RESUMO
Although selective singlet and triplet interlayer exciton (IX) emission of transition metal dichalcogenides (TMD) heterostructures can be achieved by applying an electric or magnetic field, the device structure is complex and a low temperature is usually required. Here, we demonstrate a simple all-optical approach to selectively enhance the emission of singlet and triplet IX by selectively coupling singlet or triplet IX of a WS2/WSe2 heterostructure to a SiO2 microsphere cavity. Angle-resolved photoluminescene reveals that the transition dipole of triplet IX is almost along the out-of-plane direction, while singlet IX only has 69% out-of-plane dipole moment contribution. Since the out-of-plane dipole presents a higher Purcell factor within the cavity, we can simultaneously enhance the emission intensity of IX and control the emissive IX species at room temperature in an all-optical route. Importantly, we demonstrate an all-optical valley polarization switch with a record high on/off ratio of 35.
RESUMO
The burden of chronic kidney disease (CKD) is increasing, posing a serious threat to human health. Cardiovascular calcification (CVC) is one of the most common manifestations of CKD, which significantly influences the morbidity and mortality of patients. The manifestation of CVC is an unusual accumulation of mineral substances containing calcium and phosphate. The main component is hydroxyapatite. Many cells are involved in this process, such as smooth muscle cells (SMCs) and endothelial cells. CVC is an osteogenic process initiated by complex mechanisms such as metabolic disorders of calcium and phosphorus minerals, inflammation, extracellular vesicles, autophagy, and micro-RNAs with a variety of signaling pathways like Notch, STAT, and JAK. Although drug therapy and dialysis technology continue to advance, the survival time and quality of life of CVC patients still face challenges. Therefore, early diagnosis and prevention of CKD-related CVC, reducing its mortality rate, and improving patients' quality of life have become urgent issues in the field of public health. In this review, we try to summarize the state-of-the-art understanding of the progression of CVC and hope that it will help in the prevention and treatment of CVC in CKD.
Assuntos
Insuficiência Renal Crônica , Calcificação Vascular , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia , Calcificação Vascular/etiologia , Calcificação Vascular/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Qualidade de Vida , AnimaisRESUMO
Influenza imprinting reduces risks of influenza A virus clinical infection by 40%-90%, estimated from surveillance data in western countries. We analyzed surveillance data from 2010 to 2019 in Hong Kong. Based on the best model, which included hemagglutinin group-level imprinting, we estimated that individuals imprinted to H1N1 or H2N2 had a 17% (95% confidence interval [CI], 3%-28%) lower risk of H1N1 clinical infection, and individuals imprinted to H3N2 would have 12% (95% CI, -3% to 26%) lower risk of H3N2 clinical infection. These estimated imprinting protections were weaker than estimates in western countries. Identifying factors affecting imprinting protections is important for control policies and disease modeling.
Assuntos
Doenças Transmissíveis , Epidemias , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Hong Kong/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Doenças Transmissíveis/epidemiologiaRESUMO
Copper-catalyzed radical-relay reactions provide a versatile strategy for selective C-H functionalization; however, reactions with peroxide-based oxidants often require excess C-H substrate. Here, we report a photochemical strategy to overcome this limitation by using a Cu/2,2'-biquinoline catalyst that supports benzylic C-H esterification with limiting C-H substrate. Mechanistic studies indicate that blue-light irradiation promotes carboxylate-to-copper charge transfer, reducing resting-state CuII to CuI, which activates the peroxide to generate an alkoxyl radical hydrogen-atom-transfer species. This "photochemical redox buffering" introduces a unique strategy to sustain the activity of Cu catalysts in radical-relay reactions.
RESUMO
Heterocycles are the backbone of modern medical chemistry and drug development. The derivatization of "an olefin" inside aromatic rings represents an ideal approach to access functionalized saturated heterocycles from abundant aromatic building blocks. Here, we report an operationally simple, efficient, and practical method to selectively access hydrosilylated and reduced N-heterocycles from bicyclic aromatics via a key diradical intermediate. This approach is expected to facilitate complex heterocycle functionalizations that enable access to novel medicinally relevant scaffolds.