Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Transl Med ; 22(1): 590, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915053

RESUMO

Lung cancer is the primary cause of cancer-related death worldwide, and its global incidence and mortality rates remain high. The differential expression of circular RNAs (circRNAs) can affect the development of cancer, but the mechanisms by which circRNAs regulate lung cancer progression remain unclear. In this study, we identified circSORBS1, a circRNA that has not been previously described in lung cancer and is significantly underexpressed in lung cancer tissues, blood and cell lines, and the low expression of circSORBS1 correlated with tumour grade and prognosis. In vitro and in vivo functional experiments revealed that circSORBS1 overexpression inhibited cell proliferation and migration while enhancing apoptosis. Mechanistically, circSORBS1 acts as a sponge for miR-6779-5p, indirectly inhibiting RUFY3 mRNA degradation. Simultaneously, it binds to RUFY3 mRNA to enhance its stability. This dual regulatory mechanism leads to an increase in RUFY3 protein levels, which ultimately activates the YWHAE/BAD/BCL2 apoptotic signalling pathway and suppresses lung cancer progression. Our findings not only increase the knowledge about the regulatory pattern of circRNA expression but also provide new insights into the mechanisms by which circRNAs regulate lung cancer development.


Assuntos
Apoptose , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Circular , RNA Mensageiro , Animais , Feminino , Humanos , Masculino , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Estabilidade de RNA/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética
2.
Cerebellum ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985238

RESUMO

COVID-19-associated cerebellar ataxia has rarely been reported and its clinical characteristics remain understudied. This study aims to report patients with COVID-19-associated cerebellar ataxia from our institution. COVID-19-associated cerebellar ataxia was diagnosed based on the prodromal COVID-19 infection and the exclusion of other causes. This study provides a summary of the patients' clinical presentations, neuroimaging features, and the results of anti-cerebellar antibody examinations. Our study included 11 patients and 4 were male. The median onset age was 38 years. Five patients also demonstrated signs of encephalopathy. Brain magnetic resonance imaging (MRI) was either unremarkable (n = 6) or showed bilateral cerebellar lesions (n = 5), which were typically transient, although brain atrophy could be observed later in the disease course. Anti-Homer-3 and anti-Yo antibodies were each detected in one patient, respectively. All patients received immunotherapy and nine improved. Compared with the late-onset group, individuals who exhibited ataxia earlier following COVID-19 onset (interval<5 days) were significantly younger [median age 18 (15.5-31) vs. 53.5 (44-64.8) years, p = 0.009] and more likely to present with encephalopathy (5/5 vs. 0/6, p = 0.002).They also experienced more severe symptoms [median modified Rankin scale (mRS) score at zenith 5 (5-5) vs. 2 (1.75-2.75), p = 0.017] and had a less favorable prognosis [median mRS score at the last follow-up 4 (2-5) vs. 1 (0-1.25), p = 0.009]. COVID-19-associated cerebellar ataxia can appear with encephalopathy. Brain MRI may show transient bilateral cerebellar lesions and brain atrophy later. Patients who exhibited ataxia earlier following COVID-19 were younger, had more severe symptoms and poorer outcomes.

3.
Cell Biol Toxicol ; 40(1): 78, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289194

RESUMO

The N7-methylguanosine (m7G) modification and circular RNAs (circRNAs) have been shown to play important roles in the development of lung cancer. However, the m7G modification of circRNAs has not been fully elucidated. This study revealed the presence of the m7G modification in circFAM126A. We propose the novel hypothesis that the methyltransferase TRMT10C mediates the m7G modification of circFAM126A and that the stability of m7G-modified circFAM126A is reduced. circFAM126A is downregulated in lung cancer and significantly inhibits lung cancer growth both in vitro and in vivo. The expression of circFAM126A correlates with the stage of lung cancer and with the tumour diameter, and circFAM126A can be used as a potential molecular target for lung cancer. The molecular mechanism by which circFAM126A increases HSP90 ubiquitination and suppresses AKT1 expression to regulate cellular glycolysis, ultimately inhibiting the progression of lung cancer, is elucidated. This study not only broadens the knowledge regarding the expression and regulatory mode of circRNAs but also provides new insights into the molecular mechanisms that regulate tumour cell metabolism and affect tumour cell fate from an epigenetic perspective. These findings will facilitate the development of new strategies for lung cancer prevention and treatment.


Assuntos
Proliferação de Células , Glicólise , Neoplasias Pulmonares , Metiltransferases , RNA Circular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Glicólise/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Animais , Proliferação de Células/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Células A549 , Guanosina/análogos & derivados , Guanosina/metabolismo , Masculino , Feminino , Camundongos Endogâmicos BALB C , Ubiquitinação
4.
J Neuroinflammation ; 20(1): 171, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37480037

RESUMO

BACKGROUND: Immune inflammatory responses play an important role in spinal cord injury (SCI); however, the beneficial and detrimental effects remain controversial. Many studies have described the role of neutrophils, macrophages, and T lymphocytes in immune inflammatory responses after SCI, although little is known about the role of B lymphocytes, and immunosuppression can easily occur after SCI. METHODS: A mouse model of SCI was established, and HE staining and Nissl staining were performed to observe the pathological changes. The size and morphology of the spleen were examined, and the effects of SCI on spleen function and B cell levels were detected by flow cytometry and ELISA. To explore the specific mechanism of immunosuppression after SCI, B cells from the spleens of SCI model mice were isolated using magnetic beads and analyzed by 4D label-free quantitative proteomics. The level of inflammatory cytokines and iron ions were measured, and the expression of proteins related to the Tom20 pathway was quantified by western blotting. To clarify the relationship between iron ions and B cell pyroptosis after SCI, we used FeSO4 and CCCP, which induce oxidative stress to stimulate SCI, to interfere with B cell processes. siRNA transfection to knock down Tom20 (Tom20-KD) in B cells and human B lymphocytoma cell was used to verify the key role of Tom20. To further explore the effect of iron ions on SCI, we used deferoxamine (DFO) and iron dextran (ID) to interfere with SCI processes in mice. The level of iron ions in splenic B cells and the expression of proteins related to the Tom20-Bax-caspase-gasdermin E (GSDME) pathway were analyzed. RESULTS: SCI could damage spleen function and lead to a decrease in B cell levels; SCI upregulated the expression of Tom20 protein in the mitochondria of B cells; SCI could regulate the concentration of iron ions and activate the Tom20-Bax-caspase-GSDME pathway to induce B cell pyroptosis. Iron ions aggravated CCCP-induced B cell pyroptosis and human B lymphocytoma pyroptosis by activating the Tom20-Bax-caspase-GSDME pathway. DFO could reduce inflammation and promote repair after SCI by inhibiting Tom20-Bax-caspase-GSDME-induced B cell pyroptosis. CONCLUSIONS: Iron overload activates the Tom20-Bax-caspase-GSDME pathway after SCI, induces B cell pyroptosis, promotes inflammation, and aggravates the changes caused by SCI. This may represent a novel mechanism through which the immune inflammatory response is induced after SCI and may provide a new key target for the treatment of SCI.


Assuntos
Pseudolinfoma , Traumatismos da Medula Espinal , Animais , Humanos , Camundongos , Linfócitos B , Proteína X Associada a bcl-2 , Carbonil Cianeto m-Clorofenil Hidrazona , Caspases , Gasderminas , Inflamação/etiologia , Ferro , Piroptose
5.
J Neurovirol ; 29(6): 692-698, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37898569

RESUMO

The aim of this study is to analyze the clinical characteristics and outcomes of Chinese patients with progressive multifocal leukoencephalopathy (PML) who were treated with programmed cell death protein 1 (PD1) blockade therapies. We retrospectively analyzed patients who were admitted to our hospital between October 1, 2020, and October 1, 2022, diagnosed with PML and treated with PD1 blockade therapies. Four patients with PML who were treated with PD1 blockade therapies were identified. All patients were male, and their ages ranged from 19 to 54 years old. One patient (Case 2) exhibited mild pleocytosis, while three patients (Cases 2-4) had markedly reduced T lymphocyte cell counts prior to treatment. The time interval between symptom onset and treatment initiation ranged from six to 54 weeks. All patients received pembrolizumab treatment, with a total of two to four doses administered. Three patients who responded to pembrolizumab treatment showed clinical improvement starting around 8 weeks after the initiation of therapy. Although one patient did not show clinical improvement, they ultimately survived until the last follow-up. None of the patients in this study exhibited immune-related adverse events or immune reconstitution inflammatory syndrome. PD1 blockade appears to be a promising novel therapeutic option for PML; additional prospective studies are necessary to confirm its efficacy.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Humanos , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Feminino , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Estudos Retrospectivos , Estudos Prospectivos , Anticorpos Monoclonais Humanizados/uso terapêutico
6.
BMC Genomics ; 23(1): 55, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031014

RESUMO

BACKGROUND: Lung carcinoma is a common geriatric disease. The development of genotype-targeted therapies greatly improved the management of lung carcinoma. However, the treatment for old patients can be more complex than that for young individuals. RESULTS: To investigate the benefits of genetic detection for older patients with lung carcinoma, we explored the genomic profiling of 258 patients with more than 55 years using a targeted next generation sequencing, and some of these patients were treated with targeted therapies based on the results of genomic detection. KRAS codon 61 mutations were found in 15.2% KRAS-mutated patients, which tend to be co-existing with other classical activating mutations other than codons 12/13. Acquired EGFR C797S mutations were identified in 2 cases and ERBB2 amplification was identified in 1 case. All these 3 cases developed resistance to EGFR tyrosine kinase inhibitors and showed expected results of their followed therapies. The median progression-free survival and median overall survival of patients treated with molecular targeted therapies were better than those of patients treated with chemoradiotherapy alone. CONCLUSIONS: Our findings revealed the specific genomic profiles of patients older than 55 years with lung carcinoma and suggested that these old patients have been benefit from the genetic detection, which helped identify druggable mutations and distinguish resistance mechanisms.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma , Neoplasias Pulmonares , Idoso , Receptores ErbB/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Pessoa de Meia-Idade , Mutação , Inibidores de Proteínas Quinases
7.
Cell Biol Toxicol ; 38(1): 129-146, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33656636

RESUMO

Extensive research confirmed that circRNA can play a regulatory role in various stages of tumors by interacting with various molecules. Identifying the differentially expressed circRNA in bladder cancer and exploring its regulatory mechanism on bladder cancer progression are urgent. In this study, we screened out a circRNA-circGLIS3 with a significant upregulation trend in both bladder cancer tissues and cells. Bioinformatics prediction results showed that circGLIS3 may be involved in multiple tumor-related pathways. Function gain and loss experiments verified circGLIS3 can affect the proliferation, migration, and invasion of bladder cancer cells in vitro. Moreover, silencing circGLIS3 inhibited bladder cancer cell growth in vivo. Subsequent research results indicated circGLIS3 regulated the expression of cyclin D1, a cell cycle-related protein, and cell cycle progression. Mechanically, circGLIS3 upregulates the expression of SKP1 by adsorbing miR-1273f and then promotes cyclin D1 expression, ultimately promoting the proliferation of bladder cancer cells. In summary, our study indicates that circGLIS3 plays an oncogene role in the development of bladder cancer and has potential to be a candidate for bladder cancer.


Assuntos
MicroRNAs , Neoplasias da Bexiga Urinária , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Neoplasias da Bexiga Urinária/metabolismo
8.
CNS Neurosci Ther ; 30(3): e14439, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37641882

RESUMO

AIMS: To identify an effective strategy for promoting microvascular endothelial cells (MECs) to phagocytize myelin debris and reduce secretion of inflammatory factors following spinal cord injury (SCI). METHODS: We established a coculture model of myelin debris and vascular-like structures. The efficiency with which MECs phagocytize myelin debris under different conditions was examined via ELISA, flow cytometry, and immunofluorescence. Tubastatin-A was used to interfere with the coculture model. The anti-inflammatory effects of Tubastatin-A were observed by HE staining, flow cytometry, immunofluorescence, and ELISA. RESULTS: MECs phagocytized myelin debris via IgM opsonization, and phagocytosis promoted the secretion of inflammatory factors, whereas IgG-opsonized myelin debris had no effect on inflammatory factors. Application of the HDAC6 inhibitor Tubastatin-A increased the IgG levels and decreased the IgM levels by regulating the proliferation and differentiation of B cells. Tubastatin-A exerted a regulatory effect on the HDAC6-mediated autophagy-lysosome pathway, promoting MECs to phagocytize myelin debris, reducing the secretion of inflammatory factors, and accelerating the repair of SCI. CONCLUSIONS: Inhibition of HDAC6 to regulate the immune-inflammatory response and promote MECs to phagocytize myelin debris may represent a novel strategy in the treatment of SCI.


Assuntos
Bainha de Mielina , Traumatismos da Medula Espinal , Humanos , Células Endoteliais/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/metabolismo , Imunoglobulina G/farmacologia , Imunoglobulina M/metabolismo , Macrófagos , Bainha de Mielina/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo
9.
Transl Res ; 270: 52-65, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38552953

RESUMO

The transcribed ultraconserved region (T-UCR) belongs to a new type of lncRNAs that are conserved in homologous regions of the rat, mouse and human genomes. A lot of research has reported that differential expression of T-UCRs can influence the development of various cancers, revealing the ability of T-UCRs as new therapeutic targets or potential cancer biomarkers. Most studies on the molecular mechanisms of T-UCRs in cancer have focused on ceRNA regulatory networks and interactions with target proteins, but the present study reveals an innovative dual-targeted regulatory approach in which T-UCRs bind directly to mRNAs and directly to proteins. We screened T-UCRs that may be related to colorectal cancer (CRC) by performing a whole-genome T-UCR gene microarray and further studied the functional mechanism of T-UCR uc.285+ in the development of CRC. Modulation of uc.285+ affected the proliferation of CRC cell lines and influenced the expression of the CDC42 gene. We also found that uc.285+ promoted the proliferation of CRC cells by directly binding to CDC42 mRNA and enhancing its stability while directly binding to CDC42 protein and affecting its stability. In short, our research on the characteristics of cell proliferation found that uc.285+ has a biological function in promoting CRC proliferation. uc.285+ may have considerable potential as a new diagnostic biomarker for CRC.


Assuntos
Proliferação de Células , Neoplasias Colorretais , RNA Mensageiro , Proteína cdc42 de Ligação ao GTP , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ligação Proteica , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
10.
Cancer Lett ; : 217266, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39332589

RESUMO

As a highly important methylation modification, the 5-methyladenosine (m5C) modification can profoundly affect RNAs by regulating their transcription, structure and stability. With the continuous development of high-throughput technology, differentially expressed circular RNAs (circRNAs) have been increasingly discovered, and circRNAs play unique roles in tumorigenesis and development. However, the regulatory mechanism of the m5C modification of circRNAs has not yet been revealed. In this study, circERI3, which is highly expressed in lung cancer tissue and significantly correlated with the clinical progression of lung cancer, was initially identified through differential expression profiling of circRNAs. A combined m5C microarray analysis revealed that circERI3 contains the m5C modification and that the NSUN4-mediated m5C modification of circERI3 can increase its nuclear export. The important function of circERI3 in promoting lung cancer progression in vitro and in vivo was clarified. Moreover, we elucidated the novel mechanism by which circERI3 targets DNA binding protein 1 (DDB1), regulates its ubiquitination, enhances its stability, and in turn promotes the transcription of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) through DDB1 to affect mitochondrial function and energy metabolism, which ultimately promotes the development of lung cancer. This study not only revealed the reasons for the abnormal distribution of circERI3 in lung cancer tissues from the perspective of methylation and clarified the important role of circERI3 in lung cancer progression but also described a novel mechanism by which circERI3 promotes lung cancer development through mitochondrial energy metabolism, providing new insights for the study of circRNAs in lung cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA