Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 514, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226927

RESUMO

BACKGROUND: Polyploidization, pervasive among higher plant species, enhances adaptation to water deficit, but the physiological and molecular advantages need to be investigated widely. Long non-coding RNAs (lncRNAs) are involved in drought tolerance in various crops. RESULTS: Herein, we demonstrate that tetraploidy potentiates tolerance to drought stress in cassava (Manihot esculenta Crantz). Autotetraploidy reduces transpiration by lesser extent increasing of stomatal density, smaller stomatal aperture size, or greater stomatal closure, and reducing accumulation of H2O2 under drought stress. Transcriptome analysis of autotetraploid samples revealed down-regulation of genes involved in photosynthesis under drought stress, and less down-regulation of subtilisin-like proteases involved in increasing stomatal density. UDP-glucosyltransferases were increased more or reduced less in dehydrated leaves of autotetraploids compared with controls. Strand-specific RNA-seq data (validated by quantitative real time PCR) identified 2372 lncRNAs, and 86 autotetraploid-specific lncRNAs were differentially expressed in stressed leaves. The co-expressed network analysis indicated that LNC_001148 and LNC_000160 in autotetraploid dehydrated leaves regulated six genes encoding subtilisin-like protease above mentioned, thereby result in increasing the stomatal density to a lesser extent in autotetraploid cassava. Trans-regulatory network analysis suggested that autotetraploid-specific differentially expressed lncRNAs were associated with galactose metabolism, pentose phosphate pathway and brassinosteroid biosynthesis, etc. CONCLUSION: Tetraploidy potentiates tolerance to drought stress in cassava, and LNC_001148 and LNC_000160 mediate drought tolerance by regulating stomatal density in autotetraploid cassava.


Assuntos
Aclimatação/genética , Manihot/genética , RNA Longo não Codificante/fisiologia , RNA de Plantas/fisiologia , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Manihot/fisiologia , Fotossíntese/genética , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estresse Fisiológico , Tetraploidia
2.
Breed Sci ; 68(2): 227-232, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29875606

RESUMO

Apomixis, or asexual seed formation, is of great value for plant breeding and seed production, and is desirable in modern agriculture, but natural apomixis occurs in cassava at very low frequency. In present study, apomixis was induced by the treatments of female flower buds with 1%, 1.5% and 2% (v/v) dimethyl sulfoxide (DMSO) and the results showed that 1.5% DMSO treatment was most effective for the induction of apomictic seed formation in cassava cultivar SC5 with the highest percentages of fruit set and true apomictic seeds. The germinated seedlings resembled their parents and displayed no morphological characteristics of cassava polyploid. Flow cytometry and chromosome counting showed that these plants were uniform diploids. Analysis of 34 DMSO-induced cassava progenies by the expressed sequence tag-simple sequence repeat (EST-SSR) and sequence-related amplified polymorphism (SRAP) markers showed that three true apomictic seeds were obtained from the group of SC5 treated with 1.5% DMSO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA