Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant J ; 117(5): 1330-1343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37996996

RESUMO

Plants and bacteria have distinct pathways to synthesize the bioactive vitamin B1 thiamin diphosphate (TDP). In plants, thiamin monophosphate (TMP) synthesized in the TDP biosynthetic pathway is first converted to thiamin by a phosphatase, which is then pyrophosphorylated to TDP. In contrast, bacteria use a TMP kinase encoded by ThiL to phosphorylate TMP to TDP directly. The Arabidopsis THIAMIN REQUIRING2 (TH2)-encoded phosphatase is involved in TDP biosynthesis. The chlorotic th2 mutants have high TMP and low thiamin and TDP. Ectopic expression of Escherichia coli ThiL and ThiL-GFP rescued the th2-3 mutant, suggesting that the bacterial TMP kinase could directly convert TMP into TDP in Arabidopsis. These results provide direct evidence that the chlorotic phenotype of th2-3 is caused by TDP rather than thiamin deficiency. Transgenic Arabidopsis harboring engineered ThiL-GFP targeting to the cytosol, chloroplast, mitochondrion, or nucleus accumulated higher TDP than the wild type (WT). Ectopic expression of E. coli ThiL driven by the UBIQUITIN (UBI) promoter or an endosperm-specific GLUTELIN1 (GT1) promoter also enhanced TDP biosynthesis in rice. The pUBI:ThiL transgenic rice accumulated more TDP and total vitamin B1 in the leaves, and the pGT1:ThiL transgenic lines had higher TDP and total vitamin B1 in the seeds than the WT. Total vitamin B1 only increased by approximately 25-30% in the polished and unpolished seeds of the pGT1:ThiL transgenic rice compared to the WT. Nevertheless, these results suggest that genetic engineering of a bacterial vitamin B1 biosynthetic gene downstream of TMP can enhance vitamin B1 production in rice.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Ectópica do Gene , Tiamina/metabolismo , Tiamina Pirofosfato/genética , Tiamina Pirofosfato/metabolismo , Tiamina Monofosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Bactérias/metabolismo , Proteínas de Ligação a DNA/genética
2.
Ecotoxicol Environ Saf ; 263: 115373, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619400

RESUMO

Fine particulate matter (PM2.5) is thought to exacerbate Parkinson's disease (PD) in the elderly, and early detection of PD progression may prevent further irreversible damage. Therefore, we used diffusion tensor imaging (DTI) for probing microstructural changes after late-life chronic traffic-related PM2.5 exposure. Herein, 1.5-year-old Fischer 344 rats were exposed to clean air (control), high-efficiency particulate air (HEPA)-filtered ambient air (HEPA group), and ambient traffic-related PM2.5 (PM2.5 group, 9.933 ± 1.021 µg/m3) for 3 months. Rotarod test, DTI tractographic analysis, and immunohistochemistry were performed in the end of study period. Aged rats exposed to PM2.5 exhibited motor impairment with decreased fractional anisotropy and tyrosine hydroxylase expression in olfactory and nigrostriatal circuits, indicating disrupted white matter integrity and dopaminergic (DA) neuronal loss. Additionally, increased radial diffusivity and lower expression of myelin basic protein in PM2.5 group suggested ageing progression of demyelination exacerbated by PM2.5 exposure. Significant production of tumor necrosis factor-α was also observed after PM2.5 exposure, revealing potential inflammation of injury to multiple fiber tracts of DA pathways. Microstructural changes demonstrated potential links between PM2.5-induced inflammatory white matter demyelination and behavioral performance, with indication of pre-manifestation of DTI-based biomarkers for early detection of PD progression in the elderly.


Assuntos
Poluição do Ar , Doenças Desmielinizantes , Substância Branca , Ratos , Animais , Imagem de Tensor de Difusão , Dopamina , Poeira , Material Particulado/toxicidade
3.
Transgenic Res ; 29(5-6): 511-527, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32776308

RESUMO

The ß-glucosidase, which hydrolyzes the ß(1-4) glucosidic linkage of disaccharides, oligosaccharides and glucose-substituted molecules, has been used in many biotechnological applications. The current commercial source of ß-glucosidase is mainly microbial fermentation. Plants have been developed as bioreactors to produce various kinds of proteins including ß-glucosidase because of the potential low cost. Sulfolobus solfataricus is a thermoacidophilic archaeon that can grow optimally at high temperature, around 80 °C, and pH 2-4. We overexpressed the ß-glucosidase gene from S. solfataricus in transgenic tobacco via Agrobacteria-mediated transformation. Three transgenic tobacco lines with ß-glucosidase gene expression driven by the rbcS promoter were obtained, and the recombinant proteins were accumulated in chloroplasts, endoplasmic reticulum and vacuoles up to 1%, 0.6% and 0.3% of total soluble protein, respectively. By stacking the transgenes via crossing distinct transgenic events, the level of ß-glucosidase in plants could further increase. The plant-expressed ß-glucosidase had optimal activity at 80 °C and pH 5-6. In addition, the plant-expressed ß-glucosidase showed high thermostability; on heat pre-treatment at 80 °C for 2 h, approximately 70% residual activity remained. Furthermore, wind-dried leaf tissues of transgenic plants showed good stability in short-term storage at room temperature, with ß-glucosidase activity of about 80% still remaining after 1 week of storage as compared with fresh leaf. Furthermore, we demonstrated the possibility of using the archaebacterial ß-glucosidase gene as a reporter in plants based on alternative ß-galactosidase activity.


Assuntos
Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/metabolismo , Sulfolobus solfataricus/genética , beta-Glucosidase/genética , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Celobiose/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Genes Reporter , Vetores Genéticos , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Sulfolobus solfataricus/enzimologia , Temperatura , Nicotiana/metabolismo , beta-Glucosidase/metabolismo
4.
Neurobiol Stress ; 26: 100566, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37664874

RESUMO

Major depressive disorder (MDD), a common psychiatric condition, adversely affects patients' moods and quality of life. Despite the development of various treatments, many patients with MDD remain vulnerable and inadequately controlled. Since anhedonia is a feature of depression and there is evidence of leading to metabolic disorder, deep brain stimulation (DBS) to the nucleus accumbens (NAc) might be promising in modulating the dopaminergic pathway. To determine whether NAc-DBS alters glucose metabolism via mitochondrial alteration and neurogenesis and whether these changes increase neural plasticity that improves behavioral functions in a chronic social defeat stress (CSDS) mouse model. The Lab-designed MR-compatible neural probes were implanted in the bilateral NAc of C57BL/6 mice with and without CSDS, followed by DBS or sham stimulation. All animals underwent open-field and sucrose preference testing, and brain resting-state functional MRI analysis. Meanwhile, we checked the placement of neural probes in each mouse by T2 images. By confirming the placement location, mice with incorrect probe placement (the negative control group) showed no significant therapeutic effects in behavioral performance and functional connectivity (FC) after receiving electrical stimulation and were excluded from further analysis. Western blotting, seahorse metabolic analysis, and electron microscopy were further applied for the investigation of NAc-DBS. We found NAc-DBS restored emotional deficits in CSDS-subjected mice. Concurrent with behavioral amelioration, the CSDS DBS-on group exhibited enhanced FC in the dopaminergic pathway with increased expression of BDNF- and NeuN-positive cells increased dopamine D1 receptor, dopamine D2 receptors, and TH in the medial prefrontal cortex, NAc, ventral hippocampus, ventral tegmental area, and amygdala. Increased pAMPK/total AMPK and PGC-1α levels, functions of oxidative phosphorylation, and mitochondrial biogenesis were also observed after NAc-DBS treatment. Our findings demonstrate that NAc-DBS can promote BDNF expression, which alters FC and metabolic profile in the dopaminergic pathway, suggesting a potential strategy for ameliorating emotional processes in individuals with MDD.

5.
Carbohydr Polym ; 285: 119228, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287856

RESUMO

Cryogel has macroporous structure and advantages of mechanical stability and injectability for biomedical applications. Three-dimensional (3D) printing is a customized manufacturing technology. However, there is little research on 3D printing of cryogel. In this work, we developed a 3D-printable chitosan cryogel using difunctional polyurethane nanoparticles as the crosslinker that reacted with chitosan at 4 °C for 4 h to form a stable feeding hydrogel (pre-cryogel) for 3D printing. The printed pre-cryogel was frozen at -20 °C to form 3D-printed chitosan cryogel. The 3D-printed cryogel had properties similar to those of bulk cryogel such as high compressibility, elastic recovery, and water absorption (≈3200%). Results from cell experiments indicated that the 3D-printed chitosan cryogel scaffolds provided good mechanical integrity for proliferation and chondrogenic differentiation of human adipose-derived adult stem cells. The 3D-printed chitosan cryogel scaffolds with injectability and shape recovery property are potential biomaterials for customized tissue engineering and minimally invasive surgery.

6.
Environ Sci Pollut Res Int ; 29(35): 52355-52366, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35258725

RESUMO

The effects of air pollution on sleep and dementia remain unclear. The objective of this study was to investigate the effects of air pollution on cognitive function as mediated by the sleep cycle. A cross-sectional study design was conducted to recruit 4866 subjects on which PSG had been performed. Fifty of them were further given a cognitive function evaluation by the MMSE and CASI as well as brain images by CT and MRI. Associations of 1-year air pollution parameters with sleep parameters, cognitive function, and brain structure were examined. We observed that O3 was associated with a decrease in arousal, an increase in the N1 stage, and a decrease in the N2 stage of sleep. NO2 was associated with an increase in the N1 stage, a decrease in the N2 stage, and an increase in REM. PM2.5 was associated with a decrease in the N1 stage, increases in the N2 and N3 stages, and a decrease in REM. The N1 and N2 stages were associated with cognitive decline, but REM was associated with an increase in cognitive function. The N1 stage was a mediator of the effects of PM2.5 on the concentration domain of the MMSE. O3 was associated with an increase in the pars orbitalis volume of the left brain. NO2 was associated with increases in the rostral middle frontal volume, supramarginal gyrus volume, and transverse temporal volume of the left brain, and the pars opercularis volume of the right brain. PM2.5 was associated with increases in the pars triangularis volume of the left brain and the fusiform thickness of the right brain. In conclusion, we observed that air pollution was associated with cognitive decline by mediating effects on the sleep cycle with changes in the brain structure in controlling executive, learning, and language functions in adults.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Disfunção Cognitiva , Adulto , Poluição do Ar/análise , Encéfalo , Estudos Transversais , Exposição Ambiental , Humanos , Dióxido de Nitrogênio , Material Particulado/análise , Sono
7.
Brain Pathol ; 31(1): 4-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32530070

RESUMO

Tuberous sclerosis complex (TSC) is a rare hereditary disease, which results from the mutation of either TSC1 or TSC2, and its clinical features include benign tumors and dysfunctions in numerous organs, including the brain. Many individuals with TSC manifest neuropsychiatric symptoms, such as learning impairments, cognitive deficits and anxiety. Current pharmacological treatment for TSC is the use of mTOR inhibitors. However, they are not effective in treating neuropsychiatric symptoms. We previously used curcumin, a diet-derived mTOR inhibitor, which possesses both anti-inflammatory and antiproliferative properties, to improve learning and memory deficits in Tsc2+/- mice. Diffusion tensor imaging (DTI) provides microstructural information in brain tissue and has been used to study the neuropathological changes in TSC. In this study, we confirmed that the impaired recognition memory and increased anxiety-like behavior in Tsc2+/- mice can be reversed by curcumin treatment. Second, we found altered fractional anisotropy and mean diffusivity in the anterior cingulate cortex and the hippocampus of the Tsc2+/- mice, which may indicate altered circuitry. Finally, the mTOR complex 1 hyperactivity was found in the cortex and hippocampus, coinciding with abnormal cortical myelination and increased glial fibrillary acidic protein expression in the hippocampal CA1 of Tsc2+/- mice, both of which can be rescued with curcumin treatment. Overall, DTI is sensitive to the subtle alterations that cannot be detected by conventional imaging, suggesting that noninvasive DTI may be suitable for longitudinally monitoring the in vivo neuropathology associated with the neuropsychiatric symptoms in TSC, thereby facilitating future clinical trials of pharmacological treatments.


Assuntos
Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Neuroimagem/métodos , Esclerose Tuberosa/complicações , Esclerose Tuberosa/patologia , Animais , Modelos Animais de Doenças , Endofenótipos , Camundongos
8.
Neuroscience ; 440: 65-84, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446855

RESUMO

Deep brain stimulation (DBS) is a promising treatment for neurological and psychiatric disorders. It acts by altering brain networks and facilitating synaptic plasticity. For enhancing cognitive functions, the central thalamus (CT) has been shown to be a potential DBS target. The network-level mechanisms contributing to the effect exerted by DBS on the CT (CT-DBS) remain unknown. Combining CT-DBS with functional magnetic resonance imaging (fMRI), this study explored brain areas activated while applying CT-DBS in rats, using a newly developed neural probe that was compatible with MRI and could minimize the image distortion and resolve safety issues. Results showed activation of the anterior cingulate cortex, motor cortex, primary and secondary somatosensory cortices, caudate putamen, hypothalamus, thalamus, and hippocampus, suggesting that the corticostriatal, corticolimbic, and thalamocortical brain networks were affected. Behaviorally, the CT-DBS group required a shorter time than sham controls to learn a water-reward lever-pressing task and made more correct choices in a T-maze task. Concurrent with enhanced learning performance, bilateral CT-DBS resulted in alteration in the functional connectivity of brain networks determined by resting-state fMRI. Western blot analyses showed that the protein level of both dopamine D1 and α4-nicotinic acetylcholine receptors was increased, and dopamine D2 receptor was decreased. These data suggest that CT-DBS can enhance cognitive performance as well as brain connectivity through the modulation of synaptic plasticity, such that CT is a target providing high potential for the remediation of acquired cognitive learning and memory disabilities.


Assuntos
Estimulação Encefálica Profunda , Animais , Encéfalo/diagnóstico por imagem , Cognição , Imageamento por Ressonância Magnética , Ratos , Tálamo/diagnóstico por imagem
9.
Brain Stimul ; 12(6): 1410-1420, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31324604

RESUMO

BACKGROUND: Social deficit is a core symptom in autism spectrum disorder (ASD). Although deep brain stimulation (DBS) has been proposed as a potential treatment for ASD, an ideal target nucleus is yet to be identified. DBS at the central thalamic nucleus (CTN) is known to alter corticostriatal and limbic circuits, and subsequently increase the exploratory motor behaviors, cognitive performance, and skill learning in neuropsychiatric and neurodegenerative disorders. OBJECTIVE: We first investigated the ability of CTN-DBS to selectively engage distinct brain circuits and compared the spatial distribution of evoked network activity and modulation. Second, we investigated whether CTN-DBS intervention improves social interaction in a valproic acid-exposed ASD rat offspring model. METHODS: Brain regions activated through CTN-DBS by using a magnetic resonance (MR)-compatible neural probe, which is capable of inducing site-selective microstimulations during functional MRI (fMRI), were investigated. We then performed functional connectivity MRI, the three-chamber social interaction test, and Western blotting analyses to evaluate the therapeutic efficacy of CTN-DBS in an ASD rat offspring model. RESULTS: The DBS-evoked fMRI results indicated that the activated brain regions were mainly located in cortical areas, limbic-related areas, and the dorsal striatum. We observed restoration of brain functional connectivity (FC) in corticostriatal and corticolimbic circuits after CTN-DBS, accompanied with increased social interaction and decreased social avoidance in the three-chamber social interaction test. The dopamine D2 receptor decreased significantly after CTN-DBS treatment, suggesting changes in synaptic plasticity and alterations in the brain circuits. CONCLUSIONS: Applying CTN-DBS to ASD rat offspring increased FC and altered the synaptic plasticity in the corticolimbic and the corticostriatal circuits. This suggests that CTN-DBS could be an effective treatment for improving the social behaviors of individuals with ASD.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/terapia , Estimulação Encefálica Profunda/métodos , Imageamento por Ressonância Magnética/métodos , Núcleo Mediodorsal do Tálamo/diagnóstico por imagem , Núcleo Mediodorsal do Tálamo/metabolismo , Animais , Transtorno do Espectro Autista/metabolismo , Mapeamento Encefálico/métodos , Relações Interpessoais , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo
10.
Bot Stud ; 58(1): 38, 2017 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-28916985

RESUMO

BACKGROUND: RNA editing is a process of post-transcriptional level of gene regulation by nucleotide modification. Previously, the chloroplast DNA of Taiwan endemic moth orchid, P. aphrodite subsp. formosana was determined, and 44 RNA editing sites were identified from 24 plastid protein-coding transcripts of leaf tissue via RT-PCR and then conventional Sanger sequencing. However, the RNA editing status of whole-plastid transcripts in leaf and other distinct tissue types in moth orchids has not been addressed. To sensitively and extensively examine the plastid RNA editing status of moth orchid, RNA-Seq was used to investigate the editing status of whole-plastid transcripts from leaf and floral tissues by mapping the sequence reads to the corresponding cpDNA template. With the threshold of at least 5% C-to-U or U-to-C conversion events observed in sequence reads considered as RNA editing sites. RESULTS: In total, 137 edits with 126 C-to-U and 11 U-to-C conversions, including 93 newly discovered edits, were identified in plastid transcripts, representing an average of 0.09% of the nucleotides examined in moth orchid. Overall, 110 and 106 edits were present in leaf and floral tissues, respectively, with 79 edits in common. As well, 79 edits were involved in protein-coding transcripts, and the 58 nucleotide conversions caused the non-synonymous substitution. At least 32 edits showed significant (≧20%) differential editing between leaf and floral tissues. Finally, RNA editing in trnM is required for the formation of a standard clover-leaf structure. CONCLUSIONS: We identified 137 edits in plastid transcripts of moth orchid, the highest number reported so far in monocots. The consequence of RNA editing in protein-coding transcripts mainly cause the amino acid change and tend to increase the hydrophobicity as well as conservation among plant phylogeny. RNA editing occurred in non-protein-coding transcripts such as tRNA, introns and untranslated regulatory regions could affect the formation and stability of secondary structure, which might play an important role in the regulation of gene expression. Furthermore, some unidentified tissue-specific factors might be required for regulating RNA editing in moth orchid.

11.
Plant Sci ; 190: 62-73, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22608520

RESUMO

The chloroplast genome of Phalaenopsis equestris was determined and compared to those of Phalaenopsis aphrodite and Oncidium Gower Ramsey in Orchidaceae. The chloroplast genome of P. equestris is 148,959 bp, and a pair of inverted repeats (25,846 bp) separates the genome into large single-copy (85,967 bp) and small single-copy (11,300 bp) regions. The genome encodes 109 genes, including 4 rRNA, 30 tRNA and 75 protein-coding genes, but loses four ndh genes (ndhA, E, F and H) and seven other ndh genes are pseudogenes. The rate of inter-species variation between the two moth orchids was 0.74% (1107 sites) for single nucleotide substitution and 0.24% for insertions (161 sites; 1388 bp) and deletions (189 sites; 1393 bp). The IR regions have a lower rate of nucleotide substitution (3.5-5.8-fold) and indels (4.3-7.1-fold) than single-copy regions. The intergenic spacers are the most divergent, and based on the length variation of the three intergenic spacers, 11 native Phalaenopsis orchids could be successfully distinguished. The coding genes, IR junction and RNA editing sites are relatively more conserved between the two moth orchids than between those of Phalaenopsis and Oncidium spp.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos/genética , Orchidaceae/classificação , Orchidaceae/genética , Fotossíntese/genética , Sequência de Bases , Mapeamento Cromossômico , DNA de Cloroplastos/genética , Genes de Plantas/genética , Marcadores Genéticos , Mutação INDEL/genética , Sequências Repetidas Invertidas/genética , Dados de Sequência Molecular , Mutagênese Insercional/genética , Nucleotídeos/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Edição de RNA , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA