Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Pathog ; 17(8): e1009724, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352041

RESUMO

Hemagglutinin (HA) is the immunodominant protein of the influenza virus. We previously showed that mice injected with a monoglycosylated influenza A HA (HAmg) produced cross-strain-reactive antibodies and were better protected than mice injected with a fully glycosylated HA (HAfg) during lethal dose challenge. We employed a single B-cell screening platform to isolate the cross-protective monoclonal antibody (mAb) 651 from mice immunized with the HAmg of A/Brisbane/59/2007 (H1N1) influenza virus (Bris/07). The mAb 651 recognized the head domain of a broad spectrum of HAs from groups 1 and 2 influenza A viruses and offered prophylactic and therapeutic efficacy against A/California/07/2009 (H1N1) (Cal/09) and Bris/07 infections in mice. The antibody did not possess neutralizing activity; however, antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis mediated by natural killer cells and alveolar macrophages were important in the protective efficacy of mAb 651. Together, this study highlighted the significance of effector functions for non-neutralizing antibodies to exhibit protection against influenza virus infection.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Citotoxicidade Celular Dependente de Anticorpos , Vírus da Influenza A/imunologia , Células Matadoras Naturais/imunologia , Macrófagos Alveolares/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/virologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia
3.
PLoS Pathog ; 17(2): e1009352, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33635919

RESUMO

Serological and plasmablast responses and plasmablast-derived IgG monoclonal antibodies (MAbs) have been analysed in three COVID-19 patients with different clinical severities. Potent humoral responses were detected within 3 weeks of onset of illness in all patients and the serological titre was elicited soon after or concomitantly with peripheral plasmablast response. An average of 13.7% and 3.5% of plasmablast-derived MAbs were reactive with virus spike glycoprotein or nucleocapsid, respectively. A subset of anti-spike (10 of 32) antibodies cross-reacted with other betacoronaviruses tested and harboured extensive somatic mutations, indicative of an expansion of memory B cells upon SARS-CoV-2 infection. Fourteen of 32 anti-spike MAbs, including five anti-receptor-binding domain (RBD), three anti-non-RBD S1 and six anti-S2, neutralised wild-type SARS-CoV-2 in independent assays. Anti-RBD MAbs were further grouped into four cross-inhibiting clusters, of which six antibodies from three separate clusters blocked the binding of RBD to ACE2 and five were neutralising. All ACE2-blocking anti-RBD antibodies were isolated from two recovered patients with prolonged fever, which is compatible with substantial ACE2-blocking response in their sera. Finally, the identification of non-competing pairs of neutralising antibodies would offer potential templates for the development of prophylactic and therapeutic agents against SARS-CoV-2.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/genética , Células Produtoras de Anticorpos/imunologia , Sítios de Ligação , Epitopos , Humanos , Imunoglobulina G/imunologia , Nucleocapsídeo/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
4.
Sensors (Basel) ; 23(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177481

RESUMO

As the Internet of Things (IOT) becomes more widely used in our everyday lives, an increasing number of wireless communication devices are required, meaning that an increasing number of signals are transmitted and received through antennas. Thus, the performance of antennas plays an important role in IOT applications, and increasing the efficiency of antenna design has become a crucial topic. Antenna designers have often optimized antennas by using an EM simulation tool. Although this method is feasible, a great deal of time is often spent on designing the antenna. To improve the efficiency of antenna optimization, this paper proposes a design of experiments (DOE) method for antenna optimization. The antenna length and area in each direction were the experimental parameters, and the response variables were antenna gain and return loss. Response surface methodology was used to obtain optimal parameters for the layout of the antenna. Finally, we utilized antenna simulation software to verify the optimal parameters for antenna optimization, showing how the DOE method can increase the efficiency of antenna optimization. The antenna optimized by DOE was implemented, and its measured results show that the antenna gain and return loss were 2.65 dBi and 11.2 dB, respectively.

5.
Proc Natl Acad Sci U S A ; 116(10): 4200-4205, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782805

RESUMO

Each year influenza virus infections cause hundreds of thousands of deaths worldwide and a significant level of morbidity with major economic burden. At the present time, vaccination with inactivated virus vaccine produced from embryonated chicken eggs is the most prevalent method to prevent the infections. However, current influenza vaccines are only effective against closely matched circulating strains and must be updated and administered yearly. Therefore, generating a vaccine that can provide broad protection is greatly needed for influenza vaccine development. We have previously shown that vaccination of the major surface glycoprotein hemagglutinin (HA) of influenza virus with a single N-acetylglucosamine at each of the N-glycosylation sites [monoglycosylated HA (HAmg)] can elicit better cross-protection compared with the fully glycosylated HA (HAfg). In the current study, we produced monoglycosylated inactivated split H1N1 virus vaccine from chicken eggs by the N-glycosylation process inhibitor kifunensine and the endoglycosidase Endo H, and intramuscularly immunized mice to examine its efficacy. Compared with vaccination of the traditional influenza vaccine with complex glycosylations from eggs, the monoglycosylated split virus vaccine provided better cross-strain protection against a lethal dose of virus challenge in mice. The enhanced antibody responses induced by the monoglycosylated vaccine immunization include higher neutralization activity, higher hemagglutination inhibition, and more HA stem selectivity, as well as, interestingly, higher antibody-dependent cellular cytotoxicity. This study provides a simple and practical procedure to enhance the cross-strain protection of influenza vaccine by removing the outer part of glycans from the virus surface through modifications of the current egg-based process.


Assuntos
Proteção Cruzada/imunologia , Ovos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação , Animais , Galinhas/anormalidades , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Hemaglutininas/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/prevenção & controle , Injeções Intramusculares , Manosil-Glicoproteína Endo-beta-N-Acetilglucosaminidase/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
6.
J Neuroinflammation ; 14(1): 7, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28086912

RESUMO

BACKGROUND: α/ß-Hydrolase domain 6 (ABHD6) is one of the major enzymes for endocannabinoid 2-arachidonoylglycerol (2-AG) hydrolysis in microglia cells. Our recent studies have shown that a selective ABHD6 inhibitor WWL70 has anti-inflammatory and neuroprotective effects in animal models of traumatic brain injury and multiple sclerosis. However, the role of ABHD6 in the neuroinflammatory response and the mechanisms by which WWL70 suppresses inflammation has not yet been elucidated in reactive microglia. METHODS: The hydrolytic activity and the levels of 2-AG in BV2 cells were measured by radioactivity assay and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) synthases in microglia treated with lipopolysaccharide (LPS) with/without WWL70 was determined by western blot and quantitative RT-PCR. The conversion of 2-AG to PGE2 or PGE2-glyceryl ester (PGE2-G) was assessed by enzyme-linked immunoassay (EIA) or LC-MS/MS. The involvement of ABHD6 in PGE2 production was assessed using pharmacological inhibitors and small interfering RNA (siRNA). The effect of WWL70 on PGE2 biosynthesis activity in the microsome fraction from BV2 cells and experimental autoimmune encephalopathy (EAE) mouse brain was also examined. RESULTS: We found that WWL70 suppressed PGE2 production in LPS-activated microglia via cannabinoid receptor-independent mechanisms, although intracellular levels of 2-AG were elevated by WWL70 treatment. This reduction was not attributable to WWL70 inhibition of ABHD6, given the fact that downregulation of ABHD6 by siRNA or use of KT182, an alternative ABHD6 inhibitor failed to suppress PGE2 production. WWL70 attenuated the expression of COX-2 and PGES-1/2 leading to the downregulation of the biosynthetic pathways of PGE2 and PGE2-G. Moreover, PGE2 production from arachidonic acid was reduced in the microsome fraction, indicating that WWL70 also targets PGE2 biosynthetic enzymes, which are likely to contribute to the therapeutic mechanisms of WWL70 in the EAE mouse model. CONCLUSIONS: WWL70 is an anti-inflammatory therapeutic agent capable of inhibiting PGE2 and PGE2-G production, primarily due to its reduction of COX-2 and microsomal PGES-1/2 expression and their PGE2 biosynthesis activity in microglia cells, as well as in the EAE mouse brain.


Assuntos
Ácidos Araquidônicos/metabolismo , Compostos de Bifenilo/farmacologia , Carbamatos/farmacologia , Dinoprostona/metabolismo , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Glicerídeos/metabolismo , Microglia/efeitos dos fármacos , Monoacilglicerol Lipases/metabolismo , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Células Cultivadas , Córtex Cerebral/citologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/genética , Feminino , Hidrólise/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Microglia/metabolismo , Piperidinas/farmacologia , Pirazóis/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Rimonabanto
7.
Nat Commun ; 14(1): 8205, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081816

RESUMO

The T5 family of viruses are tailed bacteriophages characterized by a long non-contractile tail. The bacteriophage DT57C is closely related to the paradigmal T5 phage, though it recognizes a different receptor (BtuB) and features highly divergent lateral tail fibers (LTF). Considerable portions of T5-like phages remain structurally uncharacterized. Here, we present the structure of DT57C determined by cryo-EM, and an atomic model of the virus, which was further explored using all-atom molecular dynamics simulations. The structure revealed a unique way of LTF attachment assisted by a dodecameric collar protein LtfC, and an unusual composition of the phage neck constructed of three protein rings. The tape measure protein (TMP) is organized within the tail tube in a three-stranded parallel α-helical coiled coil which makes direct contact with the genomic DNA. The presence of the C-terminal fragment of the TMP that remains within the tail tip suggests that the tail tip complex returns to its original state after DNA ejection. Our results provide a complete atomic structure of a T5-like phage, provide insights into the process of DNA ejection as well as a structural basis for the design of engineered phages and future mechanistic studies.


Assuntos
Bacteriófagos , Bacteriófagos/metabolismo , DNA/metabolismo
8.
Sci Transl Med ; 14(639): eabm0899, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35230146

RESUMO

A major challenge to end the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is to develop a broadly protective vaccine that elicits long-term immunity. As the key immunogen, the viral surface spike (S) protein is frequently mutated, and conserved epitopes are shielded by glycans. Here, we revealed that S protein glycosylation has site-differential effects on viral infectivity. We found that S protein generated by lung epithelial cells has glycoforms associated with increased infectivity. Compared to the fully glycosylated S protein, immunization of S protein with N-glycans trimmed to the mono-GlcNAc-decorated state (SMG) elicited stronger immune responses and better protection for human angiotensin-converting enzyme 2 (hACE2) transgenic mice against variants of concern (VOCs). In addition, a broadly neutralizing monoclonal antibody was identified from SMG-immunized mice that could neutralize wild-type SARS-CoV-2 and VOCs with subpicomolar potency. Together, these results demonstrate that removal of glycan shields to better expose the conserved sequences has the potential to be an effective and simple approach for developing a broadly protective SARS-CoV-2 vaccine.


Assuntos
Vacinas contra COVID-19 , Polissacarídeos , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/metabolismo , Humanos , Camundongos , Modelos Animais , SARS-CoV-2 , Vacinação
9.
Sci Rep ; 11(1): 22195, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773067

RESUMO

To initiate SARS-CoV-2 infection, the Receptor Binding Domain (RBD) on the viral spike protein must first bind to the host receptor ACE2 protein on pulmonary and other ACE2-expressing cells. We hypothesized that cardiac glycoside drugs might block the binding reaction between ACE2 and the Spike (S) protein, and thus block viral penetration into target cells. To test this hypothesis we developed a biochemical assay for ACE2:Spike binding, and tested cardiac glycosides as inhibitors of binding. Here we report that ouabain, digitoxin, and digoxin, as well as sugar-free derivatives digitoxigenin and digoxigenin, are high-affinity competitive inhibitors of ACE2 binding to the Original [D614] S1 and the α/ß/γ [D614G] S1 proteins. These drugs also inhibit ACE2 binding to the Original RBD, as well as to RBD proteins containing the ß [E484K], Mink [Y453F] and α/ß/γ [N501Y] mutations. As hypothesized, we also found that ouabain, digitoxin and digoxin blocked penetration by SARS-CoV-2 Spike-pseudotyped virus into human lung cells, and infectivity by native SARS-CoV-2. These data indicate that cardiac glycosides may block viral penetration into the target cell by first inhibiting ACE2:RBD binding. Clinical concentrations of ouabain and digitoxin are relatively safe for short term use for subjects with normal hearts. It has therefore not escaped our attention that these common cardiac medications could be deployed worldwide as inexpensive repurposed drugs for anti-COVID-19 therapy.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Tratamento Farmacológico da COVID-19 , Cardiotônicos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos , Células A549 , Animais , COVID-19/metabolismo , Chlorocebus aethiops , Digitoxina/farmacologia , Digoxina/farmacologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Ouabaína/farmacologia , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2/fisiologia , Células Vero
10.
Cell Rep ; 32(6): 108016, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32755598

RESUMO

The influenza virus hemagglutinin (HA) and coronavirus spike (S) protein mediate virus entry. HA and S proteins are heavily glycosylated, making them potential targets for carbohydrate binding agents such as lectins. Here, we show that the lectin FRIL, isolated from hyacinth beans (Lablab purpureus), has anti-influenza and anti-SARS-CoV-2 activity. FRIL can neutralize 11 representative human and avian influenza strains at low nanomolar concentrations, and intranasal administration of FRIL is protective against lethal H1N1 infection in mice. FRIL binds preferentially to complex-type N-glycans and neutralizes viruses that possess complex-type N-glycans on their envelopes. As a homotetramer, FRIL is capable of aggregating influenza particles through multivalent binding and trapping influenza virions in cytoplasmic late endosomes, preventing their nuclear entry. Remarkably, FRIL also effectively neutralizes SARS-CoV-2, preventing viral protein production and cytopathic effect in host cells. These findings suggest a potential application of FRIL for the prevention and/or treatment of influenza and COVID-19.


Assuntos
Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Fabaceae/química , Infecções por Orthomyxoviridae/tratamento farmacológico , Lectinas de Plantas/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Células A549 , Administração Intranasal , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , COVID-19 , Embrião de Galinha , Chlorocebus aethiops , Cães , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , Lectinas de Plantas/administração & dosagem , Lectinas de Plantas/farmacologia , Ligação Proteica , SARS-CoV-2 , Células Vero , Proteínas do Envelope Viral/metabolismo
11.
Nat Struct Mol Biol ; 27(10): 950-958, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32737466

RESUMO

The COVID-19 pandemic has had an unprecedented health and economic impact and there are currently no approved therapies. We have isolated an antibody, EY6A, from an individual convalescing from COVID-19 and have shown that it neutralizes SARS-CoV-2 and cross-reacts with SARS-CoV-1. EY6A Fab binds the receptor binding domain (RBD) of the viral spike glycoprotein tightly (KD of 2 nM), and a 2.6-Å-resolution crystal structure of an RBD-EY6A Fab complex identifies the highly conserved epitope, away from the ACE2 receptor binding site. Residues within this footprint are key to stabilizing the pre-fusion spike. Cryo-EM analyses of the pre-fusion spike incubated with EY6A Fab reveal a complex of the intact spike trimer with three Fabs bound and two further multimeric forms comprising the destabilized spike attached to Fab. EY6A binds what is probably a major neutralizing epitope, making it a candidate therapeutic for COVID-19.


Assuntos
Anticorpos Antivirais/química , Betacoronavirus/química , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Glicoproteína da Espícula de Coronavírus/química , Adulto , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Chlorocebus aethiops , Reações Cruzadas , Microscopia Crioeletrônica , Cristalografia por Raios X , Epitopos , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Masculino , Pandemias , Peptidil Dipeptidase A/metabolismo , Conformação Proteica , Domínios Proteicos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
12.
Sci Rep ; 7(1): 9814, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852020

RESUMO

The poor intracellular uptake and non-specific binding of anticancer drugs into cancer cells are the bottlenecks in cancer therapy. Nanocarrier platforms provide the opportunities to improve the drug efficacy. Here we show a carbon-based nanomaterial nanodiamond (ND) that carried paclitaxel (PTX), a microtubule inhibitor, and cetuximab (Cet), a specific monoclonal antibody against epidermal growth factor receptor (EGFR), inducing mitotic catastrophe and tumor inhibition in human colorectal cancer (CRC). ND-PTX blocked the mitotic progression, chromosomal separation, and induced apoptosis in the CRC cells; however, NDs did not induce these effects. Conjugation of ND-PTX with Cet (ND-PTX-Cet) was specifically binding to the EGFR-positive CRC cells and enhanced the mitotic catastrophe and apoptosis induction. Besides, ND-PTX-Cet markedly decreased tumor size in the xenograft EGFR-expressed human CRC tumors of nude mice. Moreover, ND-PTX-Cet induced the mitotic marker protein phospho-histone 3 (Ser10) and apoptotic protein active-caspase 3 for mitotic catastrophe and apoptosis. Taken together, this study demonstrated that the co-delivery of PTX and Cet by ND enhanced the effects of mitotic catastrophe and apoptosis in vitro and in vivo, which may be applied in the human CRC therapy.


Assuntos
Antineoplásicos/administração & dosagem , Cetuximab/administração & dosagem , Mitose/efeitos dos fármacos , Nanodiamantes , Paclitaxel/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/química , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Humanos , Nanodiamantes/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Paclitaxel/química , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Autophagy ; 13(1): 187-200, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27846374

RESUMO

Selective macroautophagy/autophagy plays a pivotal role in the processing of foreign pathogens and cellular components to maintain homeostasis in human cells. To date, numerous studies have demonstrated the uptake of nanoparticles by cells, but their intracellular processing through selective autophagy remains unclear. Here we show that carbon-based nanodiamonds (NDs) coated with ubiquitin (Ub) bind to autophagy receptors (SQSTM1 [sequestosome 1], OPTN [optineurin], and CALCOCO2/NDP52 [calcium binding and coiled-coil domain 2]) and are then linked to MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) for entry into the selective autophagy pathway. NDs are ultimately delivered to lysosomes. Ectopically expressed SQSTM1-green fluorescence protein (GFP) could bind to the Ub-coated NDs. By contrast, the Ub-associated domain mutant of SQSTM1 (ΔUBA)-GFP did not bind to the Ub-coated NDs. Chloroquine, an autophagy inhibitor, prevented the ND-containing autophagosomes from fusing with lysosomes. Furthermore, autophagy receptors OPTN and CALCOCO2/NDP52, involved in the processing of bacteria, were found to be involved in the selective autophagy of NDs. However, ND particles located in the lysosomes of cells did not induce mitotic blockage, senescence, or cell death. Single ND clusters in the lysosomes of cells were observed in the xenografted human lung tumors of nude mice. This study demonstrated for the first time that Ub-coated nanoparticles bind to autophagy receptors for entry into the selective autophagy pathway, facilitating their delivery to lysosomes.


Assuntos
Autofagia , Nanodiamantes/química , Ubiquitina/química , Células A549 , Animais , Morte Celular , Linhagem Celular Tumoral , Senescência Celular , Proteínas de Fluorescência Verde/química , Humanos , Neoplasias Pulmonares/metabolismo , Lisossomos/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/química , Transplante de Neoplasias , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/química , Proteínas Recombinantes/química , Proteína Sequestossoma-1/química
14.
Exp Cell Res ; 282(2): 132-7, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12531699

RESUMO

Activation of fatty acid synthase (FAS) expression and fatty acid synthesis is a common event in human breast cancer. Sterol regulatory element binding proteins (SREBPs) are a family of transcription factors that regulate genes involved in lipid metabolism, including FAS. SREBP-1c expression is induced in liver and adipose tissue by insulin and by fasting/refeeding and is critical for nutritional regulation of lipogenic gene expression. In contrast, upregulation of fatty acid metabolism during in vitro transformation of human mammary epithelial cells and in breast cancer cells was driven by increased MAP kinase and PI 3-kinase signaling, which increased SREBP-1 levels. SREBP-1a was more abundant than SREBP-1c in many proliferative tissues and cultured cells and was thus a candidate to regulate lipogenesis for support of membrane synthesis during cell growth. We now show that SREBP-1c and FAS mRNA were both increased by H-ras transformation of MCF-10a breast epithelial cells and were both reduced by exposure of MCF-7 breast cancer cells to the MAP kinase inhibitor, PD98059, or the PI 3-kinase inhibitor, wortmannin, while SREBP-1a and SREBP-2 showed less variation. Similarly, the mRNA levels for FAS and SREBP-1c in a panel of primary human breast cancer samples showed much greater increases than did those for SREBP-1a and SREBP-2 and were significantly correlated with each other, suggesting coordinate regulation of SREBP-1c and FAS in clinical breast cancer. We conclude that regulation of FAS expression in breast cancer is achieved through modulation of SREBP-1c, similar to the regulation in liver and adipose tissue, although the upstream regulation of liopgenesis differs in these tissues.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Proteínas de Ligação a DNA/fisiologia , Ácido Graxo Sintases/biossíntese , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição , Neoplasias da Mama/patologia , Proteínas Estimuladoras de Ligação a CCAAT/biossíntese , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/fisiologia , Ácido Graxo Sintases/genética , Feminino , Humanos , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA