Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 559(7714): 387-391, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30022132

RESUMO

Evidence from palaeoclimatology suggests that abrupt Northern Hemisphere cold events are linked to weakening of the Atlantic Meridional Overturning Circulation (AMOC)1, potentially by excess inputs of fresh water2. But these insights-often derived from model runs under preindustrial conditions-may not apply to the modern era with our rapid emissions of greenhouse gases. If they do, then a weakened AMOC, as in 1975-1998, should have led to Northern Hemisphere cooling. Here we show that, instead, the AMOC minimum was a period of rapid surface warming. More generally, in the presence of greenhouse-gas heating, the AMOC's dominant role changed from transporting surface heat northwards, warming Europe and North America, to storing heat in the deeper Atlantic, buffering surface warming for the planet as a whole. During an accelerating phase from the mid-1990s to the early 2000s, the AMOC stored about half of excess heat globally, contributing to the global-warming slowdown. By contrast, since mooring observations began3-5 in 2004, the AMOC and oceanic heat uptake have weakened. Our results, based on several independent indices, show that AMOC changes since the 1940s are best explained by multidecadal variability6, rather than an anthropogenically forced trend. Leading indicators in the subpolar North Atlantic today suggest that the current AMOC decline is ending. We expect a prolonged AMOC minimum, probably lasting about two decades. If prior patterns hold, the resulting low levels of oceanic heat uptake will manifest as a period of rapid global surface warming.

2.
Nat Commun ; 15(1): 4370, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778056

RESUMO

El Niño-Southern Oscillation (ENSO) is the dominant mode of interannual climate variability in the tropical Pacific, whose nature nevertheless may change significantly in a warming climate. Here, we show that the predictability of ENSO may decrease in the future. Across the models in the Coupled Model Intercomparison Project Phase 6 (CMIP6), we find a robust decrease of the persistence and predictability for the Central Pacific (CP) ENSO under global warming, notably in passing through the boreal spring. The strength of spring predictability barrier will be increased by 25% in the future. The reduced predictability of CP ENSO is caused by the faster warming over surface ocean in tropical Pacific and, in turn, the enhanced thermodynamical damping rate on CP ENSO in response to global warming. In contrast, the predictability of Eastern Pacific ENSO will not change. Our results suggest that future greenhouse warming will make the prediction of CP ENSO more challenging, with far-reaching implications on future climate predictions.

3.
Nat Commun ; 12(1): 990, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579967

RESUMO

The ability of climate models to simulate 20th century global mean sea level (GMSL) and regional sea-level change has been demonstrated. However, the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) sea-level projections have not been rigorously evaluated with observed GMSL and coastal sea level from a global network of tide gauges as the short overlapping period (2007-2018) and natural variability make the detection of trends and accelerations challenging. Here, we critically evaluate these projections with satellite and tide-gauge observations. The observed trends from GMSL and the regional weighted mean at tide-gauge stations confirm the projections under three Representative Concentration Pathway (RCP) scenarios within 90% confidence level during 2007-2018. The central values of the observed GMSL (1993-2018) and regional weighted mean (1970-2018) accelerations are larger than projections for RCP2.6 and lie between (or even above) those for RCP4.5 and RCP8.5 over 2007-2032, but are not yet statistically different from any scenario. While the confirmation of the projection trends gives us confidence in current understanding of near future sea-level change, it leaves open questions concerning late 21st century non-linear accelerations from ice-sheet contributions.

4.
Clim Dyn ; 52(3): 2145-2157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30956406

RESUMO

Interest in the "Interdecadal Pacific Oscillation (IPO)" in the global SST has surged recently on suggestions that the Pacific may be the source of prominent interdecadal variations observed in the global-mean surface temperature possibly through the mechanism of low-frequency modulation of the interannual El Nino-Southern Oscillation (ENSO) phenomenon. IPO was defined by performing empirical orthogonal function (EOF) analysis of low-pass filtered SST. The low-pass filtering creates its unique set of mathematical problems-in particular, mode mixing-and has led to some questions, many unanswered. To understand what these EOFs are, we express them first in terms of the recently developed pairwise rotated EOFs of the unfiltered SST, which can largely separate the high and low frequency bands without resorting to filtering. As reported elsewhere, the leading rotated dynamical modes (after the global warming trend) of the unfiltered global SST are: ENSO, Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). IPO is not among them. The leading principal component (PC) of the low-pass filtered global SST is usually defined as IPO and it is seen to comprise of ENSO, PDO and AMO in various proportions depending on the filter threshold. With decadal filtering, the contribution of the interannual ENSO is understandably negligible. The leading dynamical mode of the filtered global SST is mostly AMO, and therefore should not have been called the Interdecadal "Pacific" Oscillation. The leading dynamical mode of the filtered pan-Pacific SST is mostly PDO. This and other low-frequency variability that have the action center in the Pacific, from either the pan-Pacific or global SST, have near zero global mean.

5.
Science ; 345(6199): 897-903, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25146282

RESUMO

A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years.


Assuntos
Aquecimento Global , Efeito Estufa , Temperatura Alta , Oceanos e Mares , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA