Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Langmuir ; 40(10): 5326-5337, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408337

RESUMO

Capacitors with zinc ions, with excellent stabilities, low cost, and high energy density, are expected to be promising energy storage devices. However, the development of zinc-ion capacitors is quietly restricted by low specific capacity and cycling stability. Herein, to overcome these limitations, honeycomb-structured S, N-codoped carbon (SNPC) is constructed by one-pot calcination of waste corn bracts and thiourea. The honeycomb structure of SNPC is demonstrated to provide abundant active sites that can enhance the extron/ion transport, conductivity for high power export, and ion adsorption capacity in energy storage applications, leading to a higher electrochemical performance achieved. The electrolytes of zinc salt have also been studied. It reveals that the SNPC electrode presents the best electrochemical performance in a 2 M ZnSO4 and 0.5 M ZnCl2 electrolyte mixture because in the electrolyte mixture, Cl- can replace the existing bound water in the solvation structure to form an anion-type water-free solvation structure ZnCl42-. The SNPC-800 electrode with a highly improved surface area (∼909.0 m2 g-1) is proved to be more suitable as the electrode than other materials. Aqueous zinc-ion capacitors (ZICs) have been assembled by the honeycomb-structured SNPC-800 as the cathode, which can achieve a relatively wide working voltage range of 0.1-1.8 V. The SNPC-800 ZICs exhibit a superior specific capacity of 179.1 mA h g-1 at 0.1 A g-1. The energy density of SNPC-800 ZICs reaches an impressive value of 89.6 Wh kg-1 at 53.8 W kg-1, and it sustains 28.3 Wh kg-1 at 1997.6 W kg-1. In addition, there is 99.8% capacity retention in the SNPC-800 ZICs over 5000 cycles. The absorption energy in SPNC is much higher than that in undoped CPC, as confirmed by density functional theory, which reveals that introducing of heteroatoms (S, N) has a comparatively active advantage at increasing the Zn-ion storage capacity. This work proposes a practical strategy for the effective recycling of waste biomass materials into honeycomb carbon electrode materials. Moreover, the honeycomb carbon-based ZICs with excellent electrochemical performance and long-term cycling stability possess great potential to be a superior cathode in practical applications.

2.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958853

RESUMO

Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled. Previous work found that, within a given cell, the number of microtubules within kinetochores is essentially unchanged between CENP-A-localized regions of different physical sizes. However, it is unknown if the amount of CENP-A is also unchanged between these regions of different sizes, which would reflect a strict structural correspondence between these two key characteristics of the centromere/kinetochore assembly. Here, we used super-resolution optical microscopy to image and quantify the amount of CENP-A and DNA within human centromere chromatin. We found that the amount of CENP-A within CENP-A domains of different physical sizes is indeed the same. Further, our measurements suggest that the ratio of CENP-A- to H3-containing nucleosomes within these domains is between 8:1 and 11:1. Thus, our results not only identify an unexpectedly strict relationship between CENP-A and microtubules stoichiometries but also that the CENP-A centromeric domain is almost exclusively composed of CENP-A nucleosomes.


Assuntos
Microscopia , Nucleossomos , Humanos , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/metabolismo , Cromatina , Cinetocoros/metabolismo , Autoantígenos/química
3.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446693

RESUMO

The most prominent and highly visible advantage attributed to supercapacitors of any type and application, beyond their most notable feature of high current capability, is their high stability in terms of lifetime, number of possible charge/discharge cycles or other stability-related properties. Unfortunately, actual devices show more or less pronounced deterioration of performance parameters during time and use. Causes for this in the material and component levels, as well as on the device level, have only been addressed and discussed infrequently in published reports. The present review attempts a complete coverage on these levels; it adds in modelling approaches and provides suggestions for slowing down ag(e)ing and degradation.


Assuntos
Líquidos Corporais , Antígenos do Grupo Sanguíneo de Lewis
4.
Molecules ; 28(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894618

RESUMO

The drug development process suffers from low success rates and requires expensive and time-consuming procedures. The traditional one drug-one target paradigm is often inadequate to treat multifactorial diseases. Multitarget drugs may potentially address problems such as adverse reactions to drugs. With the aim to discover a multitarget potential inhibitor for B-cell lymphoma treatment, herein, we developed a general pipeline combining machine learning, the interpretable model SHapley Additive exPlanation (SHAP), and molecular dynamics simulations to predict active compounds and fragments. Bruton's tyrosine kinase (BTK) and Janus kinase 3 (JAK3) are popular synergistic targets for B-cell lymphoma. We used this pipeline approach to identify prospective potential dual inhibitors from a natural product database and screened three candidate inhibitors with acceptable drug absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Ultimately, the compound CNP0266747 with specialized binding conformations that exhibited potential binding free energy against BTK and JAK3 was selected as the optimum choice. Furthermore, we also identified key residues and fingerprint features of this dual-target inhibitor of BTK and JAK3.


Assuntos
Janus Quinase 3 , Linfoma de Células B , Humanos , Tirosina Quinase da Agamaglobulinemia , Fluxo de Trabalho , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
5.
J Org Chem ; 86(21): 14485-14492, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34661400

RESUMO

An efficient method to assemble diverse benzoxazoles/benzothiazoles in good yields was developed via oxidative cyclization with 2-aminothiophenols or 2-iodoanilines as raw materials. In this protocol, elemental sulfur was used as the effective oxidant and C atoms on the C═C double bond were introduced as a one-carbon donator.

6.
Bioorg Med Chem Lett ; 40: 127968, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33753264

RESUMO

A series of 5-phenyloxazole-2-carboxylic acid derivatives were synthesized, and their structure-activity relationships (SARs) were studied. N,5-diphenyloxazole-2-carboxamides 6, 7, and 9, which mimicked ABT751, showed improved cytotoxicity compared with ABT751. Compound 9 exhibited the highest antiproliferative activities against Hela A549, and HepG2 cancer cell lines, with IC50 values of 0.78, 1.08, and 1.27 µM, respectively. Furthermore, compound 9 showed selectivity for human cancer cells over normal cells, and this selectivity was greater than those of ABT751 and colchicine. Preliminary mechanism studies suggested that compound 9 inhibited tubulin polymerization and led to cell cycle arrest at G2/M phase. Molecular docking studies indicated that compound 9 bound to the colchicine binding site of tubulin. Our findings provided insights into useful SARs for further structural modification of inhibitors of tubulin polymerization.


Assuntos
Antineoplásicos/farmacologia , Oxazóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/metabolismo , Polimerização/efeitos dos fármacos , Ligação Proteica , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/metabolismo
7.
Chemistry ; 26(69): 16328-16337, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663344

RESUMO

Carbon materials derived from zeolitic imidazolate framework-8 (ZIF-8) and composites thereof have been intensively investigated in supercapacitors. The particle size of the used ZIF-8 ranges from dozens of nanometers to several microns. However, the influence of the particle size of ZIF-8 on the capacitive performances is still not clear. A series of ZIF-8 with different particle sizes (from 25 to 296 nm) has been synthesized and carbonized for supercapacitors. Based on TEM, EDX mapping, XRD, Raman, nitrogen adsorption-desorption, XPS, and the results of electrochemical tests, the optimal particle size (≈70 nm) for superior supercapacitor performances in both acidic and alkaline electrolytes has been obtained. This important result provides a significant reference to guide future ZIF-8 related research to achieve the best electrochemical performance.

8.
Nanotechnology ; 31(3): 035402, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31550696

RESUMO

Herein, polystyrene waste was carbonized into mesoporous carbon nanosheets (CNS) using the template method. The pore structure of the obtained CNS was further tuned by KOH activation, resulting in the formation of hierarchical porous carbon sheets with a specific surface area of 2650 m2 g-1 and a pore volume of 2.43 cm3 g-1. Benefiting from these unique properties, in a three electrode system, the hierarchical porous carbon sheets displayed a specific capacitance of 323 F g-1 at 0.5 A g-1 in a 6 M KOH electrolyte, good rate capability (222 F g-1 at 20 A g-1) and cycle stability (92.6% of capacitance retention after 10 000 cycles). More importantly, an energy density of 44.1 Wh kg-1 was also displayed with a power density of 757.1 W kg-1 in an organic electrolyte. In this regard, the present strategy demonstrates a facile approach for recycling plastic waste into high value-added products, which will potentially pave the way for the treatment of plastic waste in the future.

9.
Langmuir ; 35(39): 12613-12619, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31486656

RESUMO

Porous graphene flakes (PGFs) with controllable pore sizes are selectively prepared through self-assembly of Fe3O4 nanoparticles on organic modified montmorillonite combined with carbonization and subsequent annealing treatment. The resulting PGFs with a thickness of 5 nm have a specific surface area of 337 m2/g, pore volume of 0.66 cm3/g, and mean pore diameter of 15 nm. Due to their unique porous flake structures, PGFs show an impressive rate performance in lithium-ion batteries, especially at high current densities (238 mA h/g at 10 C) as well as long-term stability in comparison to the commercial graphite (55 mA h/g at 10 C). Therefore, PGFs with their key structural properties serve as ideal candidates as electrode components in lithium-ion batteries and show great potential application in other energy storage fields.

10.
Nanotechnology ; 30(29): 295703, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30861503

RESUMO

Carbon-based supercapacitors have attracted considerable academic and practical interest due to their advantages of low cost, high power density, and superior durability. Herein, we report the facile synthesis of hierarchical porous carbon sheets (HPCSs) featuring a high specific surface area (2788 m2 g-1), derived from pyrrole through a combination of MgO template carbonization and KOH activation. The hierarchical pores with the co-existence of micropores and mesopores were obtained in the HPCSs. Benefiting from the high surface area, well-balanced pore size distribution as well as high conductivity, the prepared HPCSs exhibited a high gravimetric specific capacitance of 226.4 F g-1 at a scan rate of 1 mV s-1 in the electrolyte of 1 M H2SO4 in the two-electrode configuration. Moreover, the excellent electrochemical long-cycle stability has been demonstrated by 10 000 cycles of rapid charging-discharging at 10 A g-1 with a capacitance retention of 97.3%. The electrochemical performance clearly indicates the promising potential of using HPCSs as electrode materials for supercapacitors.

12.
Glob Chang Biol ; 22(5): 1857-66, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26668117

RESUMO

Responses of grassland carbon (C) cycling to climate change and land use remain a major uncertainty in model prediction of future climate. To explore the impacts of global change on ecosystem C fluxes and the consequent changes in C storage, we have conducted a field experiment with warming (+3 °C), altered precipitation (doubled and halved), and annual clipping at the end of growing seasons in a mixed-grass prairie in Oklahoma, USA, from 2009 to 2013. Results showed that although ecosystem respiration (ER) and gross primary production (GPP) negatively responded to warming, net ecosystem exchange of CO2 (NEE) did not significantly change under warming. Doubled precipitation stimulated and halved precipitation suppressed ER and GPP equivalently, with the net outcome being unchanged in NEE. These results indicate that warming and altered precipitation do not necessarily have profound impacts on ecosystem C storage. In addition, we found that clipping enhanced NEE due to a stronger positive response of GPP compared to ER, indicating that clipping could potentially be an effective land practice that could increase C storage. No significant interactions between warming, altered precipitation, and clipping were observed. Meanwhile, we found that belowground net primary production (BNPP) in general was sensitive to climate change and land use though no significant changes were found in NPP across treatments. Moreover, negative correlations of the ER/GPP ratio with soil temperature and moisture did not differ across treatments, highlighting the roles of abiotic factors in mediating ecosystem C fluxes in this grassland. Importantly, our results suggest that belowground C cycling (e.g., BNPP) could respond to climate change with no alterations in ecosystem C storage in the same period.


Assuntos
Ciclo do Carbono , Mudança Climática , Pradaria , Aquecimento Global , Herbivoria , Oklahoma , Chuva
13.
Biomed Microdevices ; 16(3): 449-58, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24676537

RESUMO

In this paper, we study synthesis and characteristics of mesoporous silica nanotubes modified by titanium dioxide, as well as their antimicrobial properties and influence on mitochondrial activity of mouse fibroblast L929. Nanocrystalized titania is confined in mesopores of silica nanotubes and its light activated antibacterial response is revealed. The analysis of the antibacterial effect on Escherichia coli. (ATCC 25922) shows strong enhancement during irradiation with the artificial visible and ultraviolet light in respect to the commercial catalyst and control sample free from the nanomaterials. In darkness, the mesoporous silica/titania nanostructures exhibited antibacterial activity dependent on the stirring speed of the suspension containing nanomaterials. Obtained micrograph proved internalization of the sample into the microorganism trough the cell membrane. The analysis of the mitochondrial activity and amount of lactate dehydrogenase released from mouse fibroblast cells L929 in the presence of the sample were determined with LDH and WST1 assays, respectively. The synthesized silica/titania antibacterial agent also exhibits pronounced photoinduced inactivation of the bacterial growth under the artificial visible and UV light irritation in respect to the commercial catalyst. Additionally, mesoporous silica/titania nanotubes were characterized in details by means of high resolution transmission electron microscopy (HR-TEM), XRD and BET Isotherm.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas/química , Nanotubos/química , Dióxido de Silício/química , Titânio/química , Titânio/farmacologia , Animais , Antibacterianos/toxicidade , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Camundongos , Processos Fotoquímicos , Porosidade , Titânio/toxicidade
14.
Environ Sci Technol ; 48(7): 4048-55, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24611910

RESUMO

The catalytic carbonization of polyolefin materials to synthesize carbon nanotubes (CNTs) is a promising strategy for the processing and recycling of plastic wastes, but this approach is generally limited due to the selectivity of catalysts and the difficulties in separating the polyolefin mixture. In this study, the influence of nanosized carbon black (CB) and Ni2O3 as a novel combined catalyst system on catalyzing carbonization of polypropylene (PP), polyethylene (PE), polystyrene (PS) and their blends was investigated. We showed that this combination was efficient to promote the carbonization of these polymers to produce CNTs with high yields and of good quality. Catalytic pyrolysis and model carbonization experiments indicated that the carbonization mechanism was attributed to the synergistic effect of the combined catalysts rendered by CB and Ni2O3: CB catalyzed the degradation of PP, PE, and PS to selectively produce more aromatic compounds, which were subsequently dehydrogenated and reassembled into CNTs via the catalytic action of CB together with Ni particles. Moreover, the performance of the synthesized CNTs as the electrode of supercapacitor was investigated. The supercapacitor displayed a high specific capacitance as compared to supercapacitors using commercial CNTs and CB. This difference was attributed to the relatively larger specific surface areas of our synthetic CNTs and their more oxygen-containing groups.


Assuntos
Capacitância Elétrica , Nanotubos de Carbono/química , Níquel/química , Óxidos/química , Tamanho da Partícula , Polienos/química , Fuligem/química , Resíduos/análise , Adsorção , Catálise , Eletrodos , Modelos Teóricos , Nanotubos de Carbono/ultraestrutura , Polietileno/química , Poliestirenos/química , Análise Espectral Raman , Temperatura , Difração de Raios X
15.
Phys Chem Chem Phys ; 16(45): 25071-5, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25330186

RESUMO

The porous carbon nanotubes were selectively prepared from the pristine carbon nanotubes. The surface of carbon nanotubes was firstly functionalized with Fe2O3 nanoparticles and subsequent heat treatment induced CNT etching. After removal of Fe2O3 nanoparticles, mesopores were formed in carbon nanotubes and thus porous structure was obtained. The obtained material of porous carbon nanotubes with higher specific surface area and larger pore sizes was tested as anode material of lithium ion batteries and showed improved performance with respect to the pristine carbon nanotubes.

16.
ACS Omega ; 8(38): 35024-35033, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779983

RESUMO

As the discharge amount of dye wastewater increases with the development of the textile printing and dyeing industries, the treatment of the dyes in the wastewater becomes more complex. The adsorption method is a commonly used method for treating dye wastewater. The adsorbent is the key factor affecting the adsorption performance. To develop a high-performance adsorbent, a porous carbon material prepared from potassium citrate by the calcination method was applied in the adsorption of dye-containing water in this study. The morphology and pore structure of the porous carbon materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and N2 adsorption/desorption isotherm. The porous carbon material with a specific surface area of 1436 m2 g-1, PC-900, was used as an adsorbent for the adsorption of methyl orange (MO) and methylene blue (MB). The results showed that the maximum adsorption capacity of PC-900 for MO and MB reached 927 and 1853.6 mg g-1, respectively. Studies on adsorption kinetics and adsorption isotherms showed that the pseudo-second-order kinetic model and the Langmuir isotherm model were more appropriate to describe the adsorption process of MO and MB by PC-900. In addition, the results of the mixed adsorption experiment of MO and MB dyes showed that PC-900 had selective adsorption for MB.

17.
Methods Appl Fluoresc ; 11(4)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647910

RESUMO

The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometryin vitro, it is presently challenging to precisely quantify this propertyin vivo,especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.


Assuntos
Microscopia , Imagem Individual de Molécula , Cromatina , Corantes Fluorescentes , Ionóforos
18.
J Antibiot (Tokyo) ; 76(7): 406-415, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37185582

RESUMO

This study aims to explore the potential targets of bithionol in Staphylococcus aureus.The four bithionol biotinylated probes Bio-A2-1, Bio-A2-2, Bio-A2-3, and Bio-A2-4 were synthesized, the minimal inhibitory concentrations (MICs) of these probes against S. aureus were determined. The bithionol binding proteins in S. aureus were identified through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe. The biotinylated bithionol probes Bio-A2-1 and Bio-A2-3 displayed antibacterial activities against S. aureus. The Bio-A2-1 showed lower MICs than Bio-A2-3, and both with the MIC50/MIC90 at 12.5/12.5 µM against S. aureus clinical isolates. The inhibition rates of bithionol biotinylated probes Bio-A2-1 and Bio-A2-3 on the biofilm formation of S. aureus were comparable to that of bithionol, and were stronger than that of Bio-A2-2 and Bio-A2-4. The biofilm formation of 10 out of 12S. aureus clinical isolates could be inhibited by Bio-A2-1 (at 1/4×, or 1/2× MICs). There are three proteins identified in S. aureus through immunoprecipitation and LC-MS/MS with bithionol biotinylated probe Bio-A2-1: Protein translocase subunit SecA 1 (secA1), Alanine--tRNA ligase (alaS) and DNA gyrase subunit A (gyrA), and in which the SecA1 protein the highest coverage and the most unique peptides. The LYS112, GLN143, ASP213, GLY496 and ASP498 of SecA1 protein act as hydrogen acceptors to form 6 hydrogen bonds with bithionol biotinylated probe Bio-A2-1 by molecular docking analysis. In conclusion, the bithionol biotinylated probe Bio-A2-1 has antibacterial and anti-biofilm activities against S. aureus, and SecA1 was probably one of the potential targets of bithionol in S. aureus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus/genética , Bitionol , Simulação de Acoplamento Molecular , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Antibacterianos/química , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana , Biofilmes
19.
Sci Rep ; 12(1): 15683, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127387

RESUMO

Electrochemical exfoliation of nonconductive boron to few-layered borophene is reported. This unique effect is achieved via the incorporation of bulk boron into metal mesh inducing electrical conductivity and opening a venue for borophene fabrication via this feasible strategy. The experiments were conducted in various electrolytes providing a powerful tool to fabricate borophene flakes with a thickness of ~ 3-6 nm with different phases. The mechanism of electrochemical exfoliation of boron is also revealed and discussed. Therefore, the proposed methodology can serve as a new tool for bulk scale fabrication of few-layered borophene and speed up the development of borophene-related research and its potential application.

20.
ACS Nano ; 16(5): 8030-8039, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35485433

RESUMO

The folding of interphase chromatin into highly compact mitotic chromosomes is one of the most recognizable changes during the cell cycle. However, the structural organization underlying this drastic compaction remains elusive. Here, we combine several super resolution methods, including structured illumination microscopy (SIM), binding-activated localization microscopy (BALM), and atomic force microscopy (AFM), to examine the structural details of the DNA within the mitotic chromosome, both in the native state and after up to 30-fold extension using single-molecule micromanipulation. Images of native chromosomes reveal widespread ∼125 nm compact granules (CGs) throughout the metaphase chromosome. However, at maximal extensions, we find exclusively ∼90 nm domains (mitotic nanodomains, MNDs) that are unexpectedly resistant to extensive forces of tens of nanonewtons. The DNA content of the MNDs is estimated to be predominantly ∼80 kb, which is comparable to the size of the inner loops predicted by a recent nested loop model of the mitotic chromosome. With this DNA content, the total volume expected of the human genome assuming closely packed MNDs is nearly identical to what is observed. Thus, altogether, these results suggest that these mechanically stable MNDs, and their higher-order assembly into CGs, are the dominant higher-level structures that underlie the compaction of chromatin from interphase to metaphase.


Assuntos
Cromatina , Cromossomos , Humanos , Cromossomos/metabolismo , Metáfase , DNA/metabolismo , Micromanipulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA