Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ann Neurol ; 75(4): 542-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24700542

RESUMO

OBJECTIVE: To identify the cause of childhood onset involuntary paroxysmal choreiform and dystonic movements in 2 unrelated sporadic cases and to investigate the functional effect of missense mutations in adenylyl cyclase 5 (ADCY5) in sporadic and inherited cases of autosomal dominant familial dyskinesia with facial myokymia (FDFM). METHODS: Whole exome sequencing was performed on 2 parent-child trios. The effect of mutations in ADCY5 was studied by measurement of cyclic adenosine monophosphate (cAMP) accumulation under stimulatory and inhibitory conditions. RESULTS: The same de novo mutation (c.1252C>T, p.R418W) in ADCY5 was found in both studied cases. An inherited missense mutation (c.2176G>A, p.A726T) in ADCY5 was previously reported in a family with FDFM. The significant phenotypic overlap with FDFM was recognized in both cases only after discovery of the molecular link. The inherited mutation in the FDFM family and the recurrent de novo mutation affect residues in different protein domains, the first cytoplasmic domain and the first membrane-spanning domain, respectively. Functional studies revealed a statistically significant increase in ß-receptor agonist-stimulated intracellular cAMP consistent with an increase in adenylyl cyclase activity for both mutants relative to wild-type protein, indicative of a gain-of-function effect. INTERPRETATION: FDFM is likely caused by gain-of-function mutations in different domains of ADCY5-the first definitive link between adenylyl cyclase mutation and human disease. We have illustrated the power of hypothesis-free exome sequencing in establishing diagnoses in rare disorders with complex and variable phenotype. Mutations in ADCY5 should be considered in patients with undiagnosed complex movement disorders even in the absence of a family history.


Assuntos
Adenilil Ciclases/genética , Distúrbios Distônicos/genética , Doenças do Nervo Facial/genética , Mutação de Sentido Incorreto/genética , Adenilil Ciclases/metabolismo , Adolescente , AMP Cíclico/metabolismo , Distúrbios Distônicos/complicações , Doenças do Nervo Facial/complicações , Feminino , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Transfecção
2.
Am J Med Genet B Neuropsychiatr Genet ; 159B(1): 61-71, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22095694

RESUMO

Structural variations in the chromosome 22q11.2 region mediated by nonallelic homologous recombination result in 22q11.2 deletion (del22q11.2) and 22q11.2 duplication (dup22q11.2) syndromes. The majority of del22q11.2 cases have facial and cardiac malformations, immunologic impairments, specific cognitive profile and increased risk for schizophrenia and autism spectrum disorders (ASDs). The phenotype of dup22q11.2 is frequently without physical features but includes the spectrum of neurocognitive abnormalities. Although there is substantial evidence that haploinsufficiency for TBX1 plays a role in the physical features of del22q11.2, it is not known which gene(s) in the critical 1.5 Mb region are responsible for the observed spectrum of behavioral phenotypes. We identified an individual with a balanced translocation 46,XY,t(1;22)(p36.1;q11.2) and a behavioral phenotype characterized by cognitive impairment, autism, and schizophrenia in the absence of congenital malformations. Using somatic cell hybrids and comparative genomic hybridization (CGH) we mapped the chromosome-22 breakpoint within intron 7 of the GNB1L gene. Copy number evaluations and direct DNA sequencing of GNB1L in 271 schizophrenia and 513 autism cases revealed dup22q11.2 in two families with autism and private GNB1L missense variants in conserved residues in three families (P = 0.036). The identified missense variants affect residues in the WD40 repeat domains and are predicted to have deleterious effects on the protein. Prior studies provided evidence that GNB1L may have a role in schizophrenia. Our findings support involvement of GNB1L in ASDs as well.


Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intracelular/genética , Adolescente , Sequência de Bases , Estudos de Casos e Controles , Criança , Pré-Escolar , Quebra Cromossômica , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA , Família , Feminino , Duplicação Gênica/genética , Humanos , Recém-Nascido , Cariotipagem , Masculino , Dados de Sequência Molecular , Mutação/genética , Mutação de Sentido Incorreto/genética , Linhagem , Translocação Genética
3.
Int J Oncol ; 23(3): 737-44, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12888911

RESUMO

KIF1a is a member of the kinesin superfamily proteins that are microtubule-dependent molecular motors involved in important intracellular functions such as organelle transport and cell division. We previously determined the structure of the human KIF1Bbeta gene, which was found to be a homologue of the murine Kif1bbeta, and demonstrated that the human KIF1Bbeta is a causative gene of Charcot-Marie-Tooth disease type 2A although we did not prove that it is a tumor suppressor gene of neuroblastoma. Here, we identified another isoform of the human KIF1B gene, KIF1Balpha. The KIF1Balpha and KIF1Bbeta are alternative splicing products of the KIF1B gene located on 1p36.2. The KIF1Balpha is distinct from KIF1Bbeta in the C-terminal cargo-binding domain; however, they have the same N-terminal motor domain. We found that the transcript of approximately 7.8 kb of KIF1Balpha was expressed in several tissues, especially in skeletal muscle, by Northern blot analysis. To determine whether this gene is one of the candidate tumor suppressor genes for neuroblastoma (NB) or other pediatric solid tumors, we performed mutational screening of KIF1Balpha in 25 NB, 9 rhabdomyosarcoma, 12 Ewing sarcoma and 24 other pediatric solid tumor cell lines. Using RT-PCR single-strand conformation polymorphism analysis and direct sequencing we detected a missense mutation (M807I) in 1 NB cell line (SK-N-SH), 3 silent mutations in 2 NB cell lines and 1 primitive neuroectodermal tumor cell line, respectively. RT-PCR analysis revealed that KIF1Balpha was obviously expressed in almost all of the tumor cell lines examined except NB-1. Furthermore, real-time quantitative RT-PCR showed that there was no significant difference in KIF1Balpha expression between 14 early-stage (stage I and II) and 14 advanced-stage (stage III and IV) NB fresh tumor specimens. These results suggest that KIF1Ba in addition to KIF1Bbeta may not be a candidate tumor suppressor gene for NB.


Assuntos
Cromossomos Humanos Par 1 , Análise Mutacional de DNA , Genoma Humano , Cinesinas/genética , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Northern Blotting , Linhagem Celular Tumoral , Pré-Escolar , DNA/química , Genes Supressores de Tumor , Humanos , Lactente , Camundongos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Mutação , Mutação de Sentido Incorreto , Oligonucleotídeos Antissenso/farmacologia , Polimorfismo Conformacional de Fita Simples , Isoformas de Proteínas , Estrutura Terciária de Proteína , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
4.
Arch Neurol ; 69(5): 630-5, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22782511

RESUMO

BACKGROUND: Familial dyskinesia with facial myokymia (FDFM) is an autosomal dominant disorder that is exacerbated by anxiety. In a 5-generation family of German ancestry, we previously mapped FDFM to chromosome band 3p21-3q21. The 72.5-Mb linkage region was too large for traditional positional mutation identification. OBJECTIVE: To identify the gene responsible for FDFM by exome resequencing of a single affected individual. PARTICIPANTS: We performed whole exome sequencing in 1 affected individual and used a series of bioinformatic filters, including functional significance and presence in dbSNP or the 1000 Genomes Project, to reduce the number of candidate variants. Co-segregation analysis was performed in 15 additional individuals in 3 generations. MAIN OUTCOME MEASURES: Unique DNA variants in the linkage region that co-segregate with FDFM. RESULTS: The exome contained 23 428 single-nucleotide variants, of which 9391 were missense, nonsense, or splice site alterations. The critical region contained 323 variants, 5 of which were not present in 1 of the sequence databases. Adenylyl cyclase 5 (ADCY5) was the only gene in which the variant (c.2176G>A) was co-transmitted perfectly with disease status and was not present in 3510 control white exomes. This residue is highly conserved, and the change is nonconservative and predicted to be damaging. CONCLUSIONS: ADCY5 is highly expressed in striatum. Mice deficient in Adcy5 develop a movement disorder that is worsened by stress. We conclude that FDFM likely results from a missense mutation in ADCY5. This study demonstrates the power of a single exome sequence combined with linkage information to identify causative genes for rare autosomal dominant mendelian diseases.


Assuntos
Adenilil Ciclases/genética , Distúrbios Distônicos/complicações , Distúrbios Distônicos/genética , Doenças do Nervo Facial/complicações , Doenças do Nervo Facial/genética , Mutação de Sentido Incorreto/genética , Análise Mutacional de DNA , Exoma , Saúde da Família , Feminino , Ligação Genética , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
5.
Chin Med J (Engl) ; 123(22): 3326-33, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21163139

RESUMO

OBJECTIVE: There is a paucity of published works that systematically evaluate gene anomalies or clinical features of patients with renal cysts and diabetes syndrome (RCAD)/maturity onset diabetes of the young type 5 (MODY5). The purpose of this review was to systematically assess the detection rate, genetic and phenotypic implications of heterozygous autosomal dominant TCF2 anomalies. DATA SOURCES: MEDLINE database was searched to select articles recorded in English from 1997 to 2008. The focus was monoallelic germline TCF2 gene mutations/deletions. Biallelic inactivation, polymorphisms, DNA modification (hypomethylation and hypermethylation), loci associated with cancer risk, and somatic TCF2 anomalies were all excluded. STUDY SELECTION: After searching the literature, 50 articles were selected. RESULTS: The detection rate of TCF2 anomalies was 9.7% and varied considerably among MODY (1.4%), renal structure anomalies (RSA) (21.4%) and RSA with MODY (41.2%) subgroups. Mutations were strikingly located within the DNA binding domain and varied among exons of the DNA binding domain: exons 2 and 4 were the hottest spots, while mutations were sporadically distributed in exon 3. The consistent phenotypes were RSA (89.6%) and diabetes mellitus (DM) (45.0%). However, the concurrence of RSA and DM was relatively low (27.5%), which hinders the optimal performance of genetic testing and obtainment of timely diagnosis. Other organ involvements were complementary and necessary for the early identification of patients with TCF2 anomalies. Analysis of phenotypes of TCF2 point mutations showed significant differences in the detection rates of RSA, impaired renal function (IRF) and DM according to mutation type but not mutation location. CONCLUSION: These valuable features of TCF2 anomalies that previously did not receive sufficient attention should not be neglected.


Assuntos
Diabetes Mellitus/metabolismo , Fator 1-beta Nuclear de Hepatócito/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Esmalte Dentário/anormalidades , Esmalte Dentário/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Doenças Renais Císticas/metabolismo
6.
Neurobiol Dis ; 23(1): 97-108, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16644229

RESUMO

A severe recessive cerebellar ataxia, Ataxia-Oculomotor Apraxia 2 (AOA2) and a juvenile onset form of dominant amyotrophic lateral sclerosis (ALS4) result from mutations of the Senataxin (SETX) gene. To begin characterization this disease protein, we developed a specific antibody to the DNA/RNA helicase domain of SETX. In murine brain, SETX concentrates in several regions, including cerebellum, hippocampus and olfactory bulb with a general neuronal expression profile, colocalizing with NeuN. In cultured cells, we found that SETX was cytoplasmically diffuse, but in the nucleus, SETX was punctate, colocalizing with fibrillarin, a marker of the nucleolus. In differentiated non-cycling cells, nuclear SETX was not restricted to the nucleolus but was diffuse within the nucleoplasm, suggesting cell-cycle-dependent localization. SETX missense mutations cluster within the N-terminus and helicase domains. Flag tagging at the N-terminus caused protein mislocation to the nucleoplasm and failure to export to the cytoplasm, suggesting that the N-terminus may be essential for correct SETX localization. We report here the first characterization of SETX protein, which may provide future insights into a new mechanism leading to neuron death.


Assuntos
Ataxia/metabolismo , Doença dos Neurônios Motores/metabolismo , RNA Helicases/fisiologia , Adulto , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Feminino , Imunofluorescência , Células HeLa , Humanos , Mutação
7.
Genes Chromosomes Cancer ; 36(3): 313-6, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12557231

RESUMO

The recurrent translocation t(1;3)(p36;q21) is associated with myelodysplastic syndrome (MDS)/acute myelogenous leukemia (AML) characterized by trilineage dysplasia, especially dysmegakaryopoiesis and a poor prognosis. Recently, the two genes involved in this translocation have been identified: the MEL1 gene at 1p36.3, and the RPN1 gene at 3q21. The breakpoint in RPN1 is centromeric to the breakpoint cluster region of the inv(3) abnormality. Because the MEL1 transcript is detected only in leukemic cells with t(1;3)(p36;q21), ectopic expression of MEL1 driven by RPN1 at 3q21 is thought to contribute to the pathogenesis of t(1;3)(p36;q21) leukemia. However, the precise breakpoint in the patients has not yet been identified. With fluorescence in situ hybridization analysis by use of BAC/PAC probes, we identified the breakpoint at 1p36.3 in three MDS/AML patients with t(1;3)(p36;q21): within the first intron of the MEL1 gene (one patient) or within a 29-kb region located in the 5' region of MEL1 (two other patients). We detected several sizes of MEL1 transcript in two patients including the first patient, although we have not yet clarified whether MEL1 transcripts were different among the patients and whether a truncated MEL1 transcript was expressed in the first patient. This patient showed an unusual clinical profile, repeating progression to overt leukemia and conversion to MDS three times during the 29-month survival period, which might be related to a different molecular mechanism in this patient.


Assuntos
Região 5'-Flanqueadora/genética , Proteínas de Transporte/genética , Quebra Cromossômica/genética , Cromossomos Humanos Par 1/genética , Proteínas de Ligação a DNA , Íntrons/genética , Leucemia Mielomonocítica Aguda/genética , Síndromes Mielodisplásicas/genética , Fatores de Transcrição , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Am J Hum Genet ; 74(6): 1128-35, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15106121

RESUMO

Juvenile amyotrophic lateral sclerosis (ALS4) is a rare autosomal dominant form of juvenile amyotrophic lateral sclerosis (ALS) characterized by distal muscle weakness and atrophy, normal sensation, and pyramidal signs. Individuals affected with ALS4 usually have an onset of symptoms at age <25 years, a slow rate of progression, and a normal life span. The ALS4 locus maps to a 1.7-Mb interval on chromosome 9q34 flanked by D9S64 and D9S1198. To identify the molecular basis of ALS4, we tested 19 genes within the ALS4 interval and detected missense mutations (T3I, L389S, and R2136H) in the Senataxin gene (SETX). The SETX gene encodes a novel 302.8-kD protein. Although its function remains unknown, SETX contains a DNA/RNA helicase domain with strong homology to human RENT1 and IGHMBP2, two genes encoding proteins known to have roles in RNA processing. These observations of ALS4 suggest that mutations in SETX may cause neuronal degeneration through dysfunction of the helicase activity or other steps in RNA processing.


Assuntos
Esclerose Lateral Amiotrófica/genética , Cromossomos Humanos Par 9/genética , Mutação de Sentido Incorreto/genética , RNA Helicases/genética , Adolescente , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Autopsia , Sequência de Bases , Criança , Mapeamento Cromossômico , DNA/genética , DNA Helicases , Feminino , Genes Dominantes , Ligação Genética , Humanos , Células Híbridas , Masculino , Camundongos , Dados de Sequência Molecular , Enzimas Multifuncionais , Linhagem , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA