Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 291: 120597, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554779

RESUMO

Mapping the small venous vasculature of the hippocampus in vivo is crucial for understanding how functional changes of hippocampus evolve with age. Oxygen utilization in the hippocampus could serve as a sensitive biomarker for early degenerative changes, surpassing hippocampal tissue atrophy as the main source of information regarding tissue degeneration. Using an ultrahigh field (7T) susceptibility-weighted imaging (SWI) sequence, it is possible to capture oxygen-level dependent contrast of submillimeter-sized vessels. Moreover, the quantitative susceptibility mapping (QSM) results derived from SWI data allow for the simultaneous estimation of venous oxygenation levels, thereby enhancing the understanding of hippocampal function. In this study, we proposed two potential imaging markers in a cohort of 19 healthy volunteers aged between 20 and 74 years. These markers were: 1) hippocampal venous density on SWI images and 2) venous susceptibility (Δχvein) in the hippocampus-associated draining veins (the inferior ventricular veins (IVV) and the basal veins of Rosenthal (BVR) using QSM images). They were chosen specifically to help characterize the oxygen utilization of the human hippocampus and medial temporal lobe (MTL). As part of the analysis, we demonstrated the feasibility of measuring hippocampal venous density and Δχvein in the IVV and BVR at 7T with high spatial resolution (0.25 × 0.25 × 1 mm3). Our results demonstrated the in vivo reconstruction of the hippocampal venous system, providing initial evidence regarding the presence of the venous arch structure within the hippocampus. Furthermore, we evaluated the age effect of the two quantitative estimates and observed a significant increase in Δχvein for the IVV with age (p=0.006, r2 = 0.369). This may suggest the potential application of Δχvein in IVV as a marker for assessing changes in atrophy-related hippocampal oxygen utilization in normal aging and neurodegenerative diseases such as AD and dementia.


Assuntos
Veias Cerebrais , Imageamento por Ressonância Magnética , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Imageamento por Ressonância Magnética/métodos , Veias Cerebrais/diagnóstico por imagem , Oxigênio , Hipocampo/diagnóstico por imagem , Atrofia
2.
Neuroimage ; 291: 120588, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537765

RESUMO

BACKGROUND: Parkinson's disease (PD) is associated with the loss of neuromelanin (NM) and increased iron in the substantia nigra (SN). Magnetization transfer contrast (MTC) is widely used for NM visualization but has limitations in brain coverage and scan time. This study aimed to develop a new approach called Proton-density Enhanced Neuromelanin Contrast in Low flip angle gradient echo (PENCIL) imaging to visualize NM in the SN. METHODS: This study included 30 PD subjects and 50 healthy controls (HCs) scanned at 3T. PENCIL and MTC images were acquired. NM volume in the SN pars compacta (SNpc), normalized image contrast (Cnorm), and contrast-to-noise ratio (CNR) were calculated. The change of NM volume in the SNpc with age was analyzed using the HC data. A group analysis compared differences between PD subjects and HCs. Receiver operating characteristic (ROC) analysis and area under the curve (AUC) calculations were used to evaluate the diagnostic performance of NM volume and CNR in the SNpc. RESULTS: PENCIL provided similar visualization and structural information of NM compared to MTC. In HCs, PENCIL showed higher NM volume in the SNpc than MTC, but this difference was not observed in PD subjects. PENCIL had higher CNR, while MTC had higher Cnorm. Both methods revealed a similar pattern of NM volume in SNpc changes with age. There were no significant differences in AUCs between NM volume in SNpc measured by PENCIL and MTC. Both methods exhibited comparable diagnostic performance in this regard. CONCLUSIONS: PENCIL imaging provided improved CNR compared to MTC and showed similar diagnostic performance for differentiating PD subjects from HCs. The major advantage is PENCIL has rapid whole-brain coverage and, when using STAGE imaging, offers a one-stop quantitative assessment of tissue properties.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Parte Compacta da Substância Negra , Imageamento por Ressonância Magnética/métodos , Melaninas
3.
J Am Chem Soc ; 146(2): 1657-1666, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38174875

RESUMO

Perovskite solar cells (PSCs) that incorporate both two-dimensional (2D) and three-dimensional (3D) phases possess the potential to combine the high stability of 2D PSCs with the superior efficiency of 3D PSCs. Here, we demonstrated in situ phase reconstruction of 2D/3D perovskites using a 2D perovskite single-crystal-assisted method. A gradient phase distribution of 2D RP perovskites was formed after spin-coating a solution of the 2D Ruddlesden-Popper (RP) perovskite single crystal, (DFP)2PbI4, onto the 3D perovskite surface, followed by thermal annealing. The resulting film exhibits much reduced trap density, increased carrier mobility, and superior water resistance. As a result, the optimized 2D/3D PSCs achieved a champion efficiency of 24.87% with a high open-circuit voltage (VOC) of 1.185 V. This performance surpasses the control 3D perovskite device, which achieved an efficiency of 22.43% and a VOC of 1.129 V. Importantly, the unencapsulated device demonstrates significantly enhanced operational stability, preserving over 97% of its original efficiency after continuous light irradiation for 1500 h. Moreover, the extrapolated T80 lifetimes surpass 5700 h. These findings pave the way for rational regulation of the gradient phase distribution at the interface between 2D and 3D perovskites by employing 2D RP perovskite crystals to achieve stable and efficient PSCs.

4.
J Am Chem Soc ; 146(5): 3363-3372, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38265366

RESUMO

Inverted organic solar cells (OSCs) have attracted much attention because of their outstanding stability, with zinc oxide (ZnO) being commonly used as the electron transport layer (ETL). However, both surface defects and the photocatalytic effect of ZnO could lead to serious photodegradation of acceptor materials. This, in turn, hampers the improvement of the efficiency and stability in OSCs. Herein, we developed a multiarmed aromatic ammonium salt, namely, benzene-1,3,5-triyltrimethanaminium bromide (PhTMABr), for modifying ZnO. This compound possesses mild weak acidity aimed at removing the residual amines present within ZnO film. In addition, the PhTMABr could also passivate surface defects of ZnO through multiple hydrogen-bonding interactions between its terminal amino groups and the oxygen anion of ZnO, leading to a better interface contact, which effectively enhances charge transport. As a result, an efficiency of 18.75% was achieved based on the modified ETL compared to the bare ZnO (PCE = 17.34%). The devices utilizing the modified ZnO retained 87% and 90% of their initial PCE after thermal stress aging at 65 °C for 1500 h and continuous 1-sun illumination with maximum power point (MPP) tracking for 1780 h, respectively. Importantly, the extrapolated T80 lifetime with MPP tracking exceeds 10 000 h. The new class of materials employed in this work to modify the ZnO ETL should pave the way for enhancing the efficiency and stability of OSCs, potentially advancing their commercialization process.

5.
J Am Chem Soc ; 146(20): 14287-14296, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38718348

RESUMO

PEDOT: PSS has been widely used as a hole extraction layer (HEL) in organic solar cells (OSCs). However, their acidic nature can potentially corrode the indium tin oxide (ITO) electrode over time, leading to adverse effects on the longevity of the OSCs. Herein, we have developed a class of biphosphonic acid molecules with tunable dipole moments for self-assembled monolayers (SAMs), namely, 3-BPIC(i), 3-BPIC, and 3-BPIC-F, which exhibit an increasing dipole moment in sequence. Compared to centrosymmetric 3-BPIC(i), the axisymmetric 3-BPIC and 3-BPIC-F exhibit higher adsorption energies (Eads) with ITO, shorter interface spacing, more uniform coverage on ITO surface, and better interfacial compatibility with the active layer. Thanks to the incorporation of fluorine atoms, 3-BPIC-F exhibits a deeper highest occupied molecular orbital (HOMO) energy level and a larger dipole moment compared to 3-BPIC, resulting in an enlarged work function (WF) for the ITO/3-BPIC-F substrate. These advantages of 3-BPIC-F could not only improve hole extraction within the device but also lower the interfacial impedance and reduce nonradiative recombination at the interface. As a result, the OSCs using SAM based on 3-BPIC-F obtained a record high efficiency of 19.71%, which is higher than that achieved from the cells based on 3-BPIC(i) (13.54%) and 3-BPIC (19.34%). Importantly, 3-BPIC-F-based OSCs exhibit significantly enhanced stability compared to that utilizing PEDOT:PSS as HEL. Our work offers guidance for the future design of functional molecules for SAMs to realize even higher performance in organic solar cells.

6.
J Am Chem Soc ; 146(27): 18771-18780, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935700

RESUMO

Chiral three-dimensional (3D) perovskites exhibit exceptional optoelectronic characteristics and inherent chiroptical activity, which may overcome the limitations of low-dimensional chiral optoelectronic devices and achieve superior performance. The integrated chip of high-performance arbitrary polarized light detection is one of the aims of chiral optoelectronic devices and may be achieved by chiral 3D perovskites. Herein, we first fabricate the wafer-scale integrated full-Stokes polarimeter by the synergy of unprecedented chiral 3D perovskites (R/S-PyEA)Pb2Br6 and one-step capillary-bridge assembly technology. Compared with the chiral low-dimensional perovskites, chiral 3D perovskites present smaller exciton binding energies of 57.3 meV and excellent circular dichroism (CD) absorption properties, yielding excellent circularly polarized light (CPL) photodetectors with an ultrahigh responsivity of 86.7 A W-1, an unprecedented detectivity exceeding 4.84 × 1013 Jones, a high anisotropy factor of 0.42, and high-fidelity CPL imaging with 256 pixels. Moreover, the anisotropic crystal structure also enables chiral 3D perovskites to have a large linear-polarization response with a polarized ratio of 1.52. The combination of linear-polarization and circular-polarization discrimination capabilities guarantees the achievement of a full-Stokes polarimeter. Our study provides new research insights for the large-scale patterning wafer integration of high-performance chiroptical devices.

7.
Small ; : e2401054, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488748

RESUMO

2D conjugated extension on central units of small molecular acceptors (SMAs) has gained great successes in reaching the state-of-the-art organic photovoltaics. Whereas the limit size of 2D central planes and their dominant role in constructing 3D intermolecular packing networks are still elusive. Thus, by exploring a series of SMAs with gradually enlarged central planes, it is demonstrated that, at both single molecular and aggerated levels, there is an unexpected blue-shift for their film absorption but preferable reorganization energies, exciton lifetimes and binding energies with central planes enlarging, especially when comparing to their Y6 counterpart. More importantly, the significance of well-balanced molecular packing modes involving both central and end units is first disclosed through a systematic single crystal analysis, indicating that when the ratio of central planes area/end terminals area is no more than 3 likely provides a preferred 3D intermolecular packing network of SMAs. By exploring the limit size of 2D central planes, This work indicates that the structural profiles of ideal SMAs may require suitable central unit size together with proper heteroatom replacement instead of directly overextending 2D central planes to the maximum. These results will likely provide some guidelines for future better molecular design.

8.
Small ; 20(24): e2311561, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546001

RESUMO

Balancing the rigid backbones and flexible side chains of light-harvesting materials is crucially important to reach optimized intermolecular packing, micromorphology, and thus photovoltaic performance of organic solar cells (OSCs). Herein, based on a distinctive CH-series acceptor platform with 2D conjugation extended backbones, a series of nonfullerene acceptors (CH-6F-Cn) are synthesized by delicately tuning the lengths of flexible side chains from n-octyl to n-amyl. A systemic investigation has revealed that the variation of the side chain's length can not only modulate intermolecular packing modes and crystallinity but also dramatically improve the micromorphology of the active layer and eventual photovoltaic parameters of OSCs. Consequently, the highest PCE of 18.73% can be achieved by OSCs employing D18:PM6:CH-6F-C8 as light-harvesting materials.

9.
Glob Chang Biol ; 30(1): e17049, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988188

RESUMO

Nanoparticle pollution has been shown to affect various organisms. However, the effects of nanoparticles on species interactions, and the role of species traits, such as body size, in modulating these effects, are not well-understood. We addressed this issue using competing freshwater phytoplankton species exposed to copper oxide nanoparticles. Increasing nanoparticle concentration resulted in decreased phytoplankton species growth rates and community productivity (both abundance and biomass). Importantly, we consistently found that nanoparticles had greater negative effects on species with smaller cell sizes, such that nanoparticle pollution weakened the competitive dominance of smaller species and promoted species diversity. Moreover, nanoparticles reduced the growth rate differences and competitive ability differences of competing species, while having little effect on species niche differences. Consequently, nanoparticle pollution reduced the selection effect on phytoplankton community abundance, but increased the selection effect on community biomass. Our results suggest cell size as a key functional trait to consider when predicting phytoplankton community structure and ecosystem functioning in the face of increasing nanopollution.


Assuntos
Ecossistema , Fitoplâncton , Biodiversidade , Biomassa , Água Doce
10.
J Magn Reson Imaging ; 59(2): 563-574, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37191075

RESUMO

BACKGROUND: Patients with polyneuropathies typically have demyelination and/or axonal degeneration in peripheral nerves. Currently, there is a lack of imaging biomarkers to track the changes in these pathologies. PURPOSE: To develop and evaluate the reliability of a multiparametric quantitative magnetic resonance imaging (qMRI) method of peripheral nerves in the leg. STUDY TYPE: Prospective. SUBJECTS: Seventeen healthy volunteers (36.2 ± 13.8 years old, 9 males) with 10 of them scanned twice for test-retest. FIELD STRENGTH/SEQUENCE: 3 T, three-dimensional gradient echo and diffusion tensor imaging. ASSESSMENT: A qMRI protocol and processing pipeline was established for quantifying the following nerve parameters that are sensitive to myelin and axonal pathologies: magnetization transfer (MT) ratio (MTR), MT saturation index (MTsat), T2 *, T1 , proton density (PD), fractional anisotropy (FA), and mean/axial/radial diffusivities (MD, AD, and RD). The qMRI protocol also measures the volume of nerve fascicles (fVOL) and the fat fraction (FF) of muscles. STATISTICAL TESTS: The intersession reproducibility and inter-rater reliability of each qMRI parameter were assessed by Bland-Altman analysis and intraclass correlation coefficient (ICC). Pairwise Pearson correlation analyses were performed to investigate the intrinsic association between qMRI parameters. Distal-to-proximal variations were evaluated by paired t-tests with Bonferroni-Holm multiple comparison corrections. P < 0.05 was considered statistically significant. RESULTS: The MTR, MTsat, T2 *, T1 , PD, FA, AD, and fVOL of the sciatic and tibial nerves, and the FF of leg muscles, had an overall good-to-excellent test-retest agreement (ICC varying from 0.78 to 0.99). All the qMRI parameters had good-to-excellent inter-rater reliability (ICC > 0.80). The data demonstrated a pattern of distal-to-proximal changes of an increased nerve MTsat and FA, and a decreased nerve T1 , PD, MD, and RD, as well as a significantly increased muscle FF. DATA CONCLUSION: The proposed multiparametric qMRI method of the peripheral nerves is highly reproducible and provided healthy control data which will be used in developing monitoring biomarkers in patients with polyneuropathies. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.


Assuntos
Imagem de Tensor de Difusão , Polineuropatias , Masculino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Imagem de Tensor de Difusão/métodos , Reprodutibilidade dos Testes , Estudos Prospectivos , Perna (Membro)/diagnóstico por imagem , Nervos Periféricos/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Biomarcadores
11.
J Magn Reson Imaging ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587279

RESUMO

BACKGROUND: The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE: To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE: Prospective. SUBJECTS: Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE: 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT: The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS: Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS: 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION: Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

12.
Environ Sci Technol ; 58(19): 8587-8596, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38683942

RESUMO

Water scarcity has driven the demand for water production from unconventional sources and the reuse of industrial wastewater. Pressure-driven membranes, notably thin-film composite (TFC) membranes, stand as energy-efficient alternatives to the water scarcity challenge and various wastewater treatments. While pressure drives solvent movement, it concurrently triggers membrane compaction and flux deterioration. This necessitates a profound comprehension of the intricate interplay among compressive modulus, structural properties, and transport efficacy amid the compaction process. In this study, we present an all-encompassing compaction model for TFC membranes, applying authentic structural and mechanical variables, achieved by coupling viscoelasticity with Monte Carlo flux calculations based on the resistance-in-series model. Through validation against experimental data for multiple commercial membranes, we evaluated the influence of diverse physical parameters. We find that support polymers with a higher compressive modulus (lower compliance), supports with higher densities of "finger-like" pores, and "sponge-like" pores with optimum void fractions will be preferred to mitigate compaction. More importantly, we uncover a trade-off correlation between steady-state permeability and the modulus for identical support polymers displaying varying porosities. This model holds the potential as a valuable guide in shaping the design and optimization for further TFC applications and extending its utility to biological scaffolds and hydrogels with thin-film coatings in tissue engineering.


Assuntos
Membranas Artificiais , Porosidade , Permeabilidade , Polímeros/química
13.
Environ Sci Technol ; 58(2): 1359-1368, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38079615

RESUMO

Lithium holds immense significance in propelling sustainable energy and environmental systems forward. However, existing sensors used for lithium monitoring encounter issues concerning their selectivity and long-term durability. Addressing these challenges is crucial to ensure accurate and reliable lithium measurements during the lithium recovery processes. In response to these concerns, this study proposes a novel approach involving the use of an MXene composite membrane with incorporated poly(sodium 4-styrenesulfonate) (PSS) as an antibiofouling layer on the Li+ ion selective electrode (ISE) sensors. The resulting MXene-PSS Li+ ISE sensor demonstrates exceptional electrochemical performance, showcasing a superior slope (59.42 mV/dec), lower detection limit (10-7.2 M), quicker response time (∼10 s), higher selectivity to Na+ (-2.37) and K+ (-2.54), and reduced impedance (106.9 kΩ) when compared to conventional Li+ ISE sensors. These improvements are attributed to the unique electronic conductivity and layered structure of the MXene-PSS nanosheet coating layer. In addition, the study exhibits the long-term accuracy and durability of the MXene-PSS Li+ ISE sensor by subjecting it to real wastewater testing for 14 days, resulting in sensor reading errors of less than 10% when compared to laboratory validation results. This research highlights the great potential of MXene nanosheet coatings in advancing sensor technology, particularly in challenging applications, such as detecting emerging contaminants and developing implantable biosensors. The findings offer promising prospects for future advancements in sensor technology, particularly in the context of sustainable energy and environmental monitoring.


Assuntos
Eletrodos Seletivos de Íons , Lítio , Nitritos , Elementos de Transição , Impedância Elétrica , Eletrônica
14.
J Biochem Mol Toxicol ; 38(4): e23689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613465

RESUMO

Renal cell carcinoma (RCC) is the most common kidney cancer with high mortality rate. Pazopanib has been approved for the treatment of RCC. However, the underlying mechanism is not clear. Here, we report a novel finding by showing that treatment with Pazopanib could promote cellular senescence of the human RCC cell line ACHN. Cells were stimulated with 5, 10, and 20 µM Pazopanib, respectively. Cellular senescence was measured using senescence-associated ß-galactosidase (SA-ß-Gal) staining. Western blot analysis and real-time polymerase chain reaction were used to measure the mRNA and protein expression of nuclear factor E2-related factor 2 (Nrf2), γH2AX, human telomerase reverse transcriptase (hTERT), telomeric repeat binding factor 2 (TERF2), p53 and plasminogen activator inhibitor (PAI). First, we found that exposure to Pazopanib reduced the cell viability of ACHN cells. Additionally, Pazopanib induced oxidative stress  by increasing the production of reactive oxygen species, reducing the levels of glutathione peroxidase, and promoting nuclear translocation of Nrf2. Interestingly, Pazopanib exposure resulted in DNA damage by increasing the expression of γH2AX. Importantly, Pazopanib increased cellular senescence and reduced telomerase activity. Pazopanib also reduced the gene expression of hTERT but increased the gene expression of TERF2. Correspondingly, we found that Pazopanib increased the expression of p53 and PAI at both the mRNA and protein levels. To elucidate the underlying mechanism, the expression of Nrf2 was knocked down by transduction with Ad- Nrf2 shRNA. Results indicate that silencing of Nrf2 in ACHN cells abolished the effects of Pazopanib in stimulating cellular senescence and reducing telomerase activity. Consistently, knockdown of Nrf2 restored the expression of p53 and PAI in ACHN cells. Based on these results, we explored a novel mechanism whereby which Pazopanib displays a cytotoxicity effect in RCC cells through promoting cellular senescence mediated by Nrf2.


Assuntos
Carcinoma de Células Renais , Indazóis , Neoplasias Renais , Pirimidinas , Sulfonamidas , Telomerase , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Fator 2 Relacionado a NF-E2 , Telomerase/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Renais/tratamento farmacológico , RNA Mensageiro
15.
Nature ; 561(7722): 189-194, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209367

RESUMO

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts no new class of antibiotic with activity against Gram-negative bacteria has been approved in over fifty years. Natural products and their derivatives have a key role in combating Gram-negative pathogens. Here we report chemical optimization of the arylomycins-a class of natural products with weak activity and limited spectrum-to obtain G0775, a molecule with potent, broad-spectrum activity against Gram-negative bacteria. G0775 inhibits the essential bacterial type I signal peptidase, a new antibiotic target, through an unprecedented molecular mechanism. It circumvents existing antibiotic resistance mechanisms and retains activity against contemporary multidrug-resistant Gram-negative clinical isolates in vitro and in several in vivo infection models. These findings demonstrate that optimized arylomycin analogues such as G0775 could translate into new therapies to address the growing threat of multidrug-resistant Gram-negative infections.


Assuntos
Antibacterianos/classificação , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Biocatálise/efeitos dos fármacos , Produtos Biológicos/classificação , Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/enzimologia , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/patogenicidade , Lisina/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Porinas , Ligação Proteica , Domínios Proteicos , Serina Endopeptidases , Especificidade por Substrato
16.
Acta Radiol ; 65(2): 185-194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115683

RESUMO

BACKGROUND: It has been reported that patients with early breast cancer with 1-2 positive sentinel lymph nodes have a lower risk of non-sentinel lymph node (NSLN) metastasis and cannot benefit from axillary lymph node dissection. PURPOSE: To develop the potential of machine learning based on multiparametric magnetic resonance imaging (MRI) and clinical factors for predicting the risk of NSLN metastasis in breast cancer. MATERIAL AND METHODS: This retrospective study included 144 patients with 1-2 positive sentinel lymph node breast cancer. Multiparametric MRI morphologic findings and the detailed demographical characteristics of the primary tumor and axillary lymph node were extracted. The logistic regression, support vector classification, extreme gradient boosting, and random forest algorithm models were established to predict the risk of NSLN metastasis. The prediction efficiency of a machine-learning-based model was evaluated. Finally, the relative importance of each input variable was analyzed for the best model. RESULTS: Of the 144 patients, 80 (55.6%) developed NSLN metastasis. A total of 24 imaging features and 14 clinicopathological features were analyzed. The extreme gradient boosting algorithm had the strongest prediction efficiency with an area under curve of 0.881 and 0.781 in the training set and test set, respectively. Five main factors for the metastasis of NSLN were found, including histological grade, cortical thickness, fatty hilum, short axis of lymph node, and age. CONCLUSION: The machine-learning model incorporating multiparametric MRI features and clinical factors can predict NSLN metastasis with high accuracy for breast cancer and provide predictive information for clinical protocol.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética Multiparamétrica , Linfonodo Sentinela , Humanos , Feminino , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Metástase Linfática/patologia , Neoplasias da Mama/patologia , Biópsia de Linfonodo Sentinela/métodos , Estudos Retrospectivos , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Excisão de Linfonodo/métodos
17.
Angew Chem Int Ed Engl ; 63(17): e202400303, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38444055

RESUMO

Solid-state lithium metal batteries (LMBs), constructed through the in situ fabrication of polymer electrolytes, are considered a critical strategy for the next-generation battery systems with high energy density and enhanced safety. However, the constrained oxidation stability of polymers, such as the extensively utilized polyethers, limits their applications in high-voltage batteries and further energy density improvements. Herein, an in situ fabricated fluorinated and crosslinked polyether-based gel polymer electrolyte, FGPE, is presented, exhibiting a high oxidation potential (5.1 V). The fluorinated polyether significantly improves compatibility with both lithium metal and high-voltage cathode, attributed to the electron-withdrawing -CF3 group and the generated LiF-rich electrolyte/electrode interphase. Consequently, the solid-state Li||LiNi0.6Co0.2Mn0.2O2 batteries employing FGPE demonstrate exceptional cycling performances of 1000 cycles with 78 % retention, representing one of the best results ever reported for polymer electrolytes. Moreover, FGPE enables batteries to operate at 4.7 V, realizing the highest operating voltage of polyether-based batteries to date. Notably, our designed in situ FGPE provides the solid-state batteries with exceptional cycling stability even at practical conditions, including high cathode loading (21 mg cm-2) and industry-level 18650-type cylindrical cells (1.3 Ah, 500 cycles). This work provides critical insights into the development of oxidation-stable polymer electrolytes and the advancement of practical high-voltage LMBs.

18.
Angew Chem Int Ed Engl ; 63(23): e202404400, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517342

RESUMO

The practical application of lithium metal batteries (LMBs) has been hindered by limited cycle-life and safety concerns. To solve these problems, we develop a novel fluorinated phosphate cross-linker for gel polymer electrolyte in high-voltage LMBs, achieving superior electrochemical performance and high safety simultaneously. The fluorinated phosphate cross-linked gel polymer electrolyte (FP-GPE) by in-situ polymerization method not only demonstrates high oxidation stability but also exhibits excellent compatibility with lithium metal anode. LMBs utilizing FP-GPE realize stable cycling even at a high cut-off voltage of 4.6 V (vs Li/Li+) with various high-voltage cathode materials. The LiNi0.6Co0.2Mn0.2O2|FP-GPE|Li battery exhibits an ultralong cycle-life of 1200 cycles with an impressive capacity retention of 80.1 %. Furthermore, the FP-GPE-based batteries display excellent electrochemical performance even at practical conditions, such as high cathode mass loading (20.84 mg cm-2), ultrathin Li (20 µm), and a wide temperature range of -25 to 80 °C. Moreover, the first reported solid-state 18650 cylindrical LMBs have been successfully fabricated and demonstrate exceptional safety under mechanical abuse. Additionally, the industry-level 18650 cylindrical LiMn2O4|FP-GPE|Li4Ti5O12 cells demonstrate a remarkable cycle-life of 1400 cycles. Therefore, the impressive electrochemical performance and high safety in practical batteries demonstrate a substantial potential of well-designed FP-GPE for large-scale industrial applications.

19.
Angew Chem Int Ed Engl ; 63(9): e202316698, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38169129

RESUMO

Morphological control of all-polymer blends is quintessential yet challenging in fabricating high-performance organic solar cells. Recently, solid additives (SAs) have been approved to be capable in tuning the morphology of polymer: small-molecule blends improving the performance and stability of devices. Herein, three perhalogenated thiophenes, which are 3,4-dibromo-2,5-diiodothiophene (SA-T1), 2,5-dibromo-3,4-diiodothiophene (SA-T2), and 2,3-dibromo-4,5-diiodothiophene (SA-T3), were adopted as SAs to optimize the performance of all-polymer organic solar cells (APSCs). For the blend of PM6 and PY-IT, benefitting from the intermolecular interactions between perhalogenated thiophenes and polymers, the molecular packing properties could be finely regulated after introducing these SAs. In situ UV/Vis measurement revealed that these SAs could assist morphological character evolution in the all-polymer blend, leading to their optimal morphologies. Compared to the as-cast device of PM6 : PY-IT, all SA-treated binary devices displayed enhanced power conversion efficiencies of 17.4-18.3 % with obviously elevated short-circuit current densities and fill factors. To our knowledge, the PCE of 18.3 % for SA-T1-treated binary ranks the highest among all binary APSCs to date. Meanwhile, the universality of SA-T1 in other all-polymer blends is demonstrated with unanimously improved device performance. This work provide a new pathway in realizing high-performance APSCs.

20.
Neuroimage ; 281: 120370, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716591

RESUMO

The goal of this work was to explore the total iron burden of cerebral microbleeds (CMBs) using a semi-automatic quantitative susceptibility mapping and to establish its effect on brain atrophy through the mediating effect of white matter hyperintensities (WMH). A total of 95 community-dwelling people were enrolled. Quantitative susceptibility mapping (QSM) combined with a dynamic programming algorithm (DPA) was used to measure the characteristics of 1309 CMBs. WMH were evaluated according to the Fazekas scale, and brain atrophy was assessed using a 2D linear measurement method. Histogram analysis was used to explore the distribution of CMBs susceptibility, volume, and total iron burden, while a correlation analysis was used to explore the relationship between volume and susceptibility. Stepwise regression analysis was used to analyze the risk factors for CMBs and their contribution to brain atrophy. Mediation analysis was used to explore the interrelationship between CMBs and brain atrophy. We found that the frequency distribution of susceptibility of the CMBs was Gaussian in nature with a mean of 201 ppb and a standard deviation of 84 ppb; however, the volume and total iron burden of CMBs were more Rician in nature. A weak but significant correlation between the susceptibility and volume of CMBs was found (r = -0.113, P < 0.001). The periventricular WMH (PVWMH) was a risk factor for the presence of CMBs (number: ß = 0.251, P = 0.014; volume: ß = 0.237, P = 0.042; total iron burden: ß = 0.238, P = 0.020) and was a risk factor for brain atrophy (third ventricle width: ß = 0.325, P = 0.001; Evans's index: ß = 0.323, P = 0.001). PVWMH had a significant mediating effect on the correlation between CMBs and brain atrophy. In conclusion, QSM along with the DPA can measure the total iron burden of CMBs. PVWMH might be a risk factor for CMBs and may mediate the effect of CMBs on brain atrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA