Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208602

RESUMO

Photographic reproduction and enhancement is challenging because it requires the preservation of all the visual information during the compression of the dynamic range of the input image. This paper presents a cascaded-architecture-type reproduction method that can simultaneously enhance local details and retain the naturalness of original global contrast. In the pre-processing stage, in addition to using a multiscale detail injection scheme to enhance the local details, the Stevens effect is considered for adapting different luminance levels and normally compressing the global feature. We propose a modified histogram equalization method in the reproduction stage, where individual histogram bin widths are first adjusted according to the property of overall image content. In addition, the human visual system (HVS) is considered so that a luminance-aware threshold can be used to control the maximum permissible width of each bin. Then, the global tone is modified by performing histogram equalization on the output modified histogram. Experimental results indicate that the proposed method can outperform the five state-of-the-art methods in terms of visual comparisons and several objective image quality evaluations.


Assuntos
Compressão de Dados , Aumento da Imagem , Algoritmos , Humanos , Fotografação , Reprodução
2.
Sensors (Basel) ; 21(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924090

RESUMO

Electricity is a vital resource for various human activities, supporting customers' lifestyles in today's modern technologically driven society. Effective demand-side management (DSM) can alleviate ever-increasing electricity demands that arise from customers in downstream sectors of a smart grid. Compared with the traditional means of energy management systems, non-intrusive appliance load monitoring (NIALM) monitors relevant electrical appliances in a non-intrusive manner. Fog (edge) computing addresses the need to capture, process and analyze data generated and gathered by Internet of Things (IoT) end devices, and is an advanced IoT paradigm for applications in which resources, such as computing capability, of a central data center acted as cloud computing are placed at the edge of the network. The literature leaves NIALM developed over fog-cloud computing and conducted as part of a home energy management system (HEMS). In this study, a Smart HEMS prototype based on Tridium's Niagara Framework® has been established over fog (edge)-cloud computing, where NIALM as an IoT application in energy management has also been investigated in the framework. The SHEMS prototype established over fog-cloud computing in this study utilizes an artificial neural network-based NIALM approach to non-intrusively monitor relevant electrical appliances without an intrusive deployment of plug-load power meters (smart plugs), where a two-stage NIALM approach is completed. The core entity of the SHEMS prototype is based on a compact, cognitive, embedded IoT controller that connects IoT end devices, such as sensors and meters, and serves as a gateway in a smart house/smart building for residential DSM. As demonstrated and reported in this study, the established SHEMS prototype using the investigated two-stage NIALM approach is feasible and usable.

3.
Sensors (Basel) ; 21(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34577244

RESUMO

A desirable photographic reproduction method should have the ability to compress high-dynamic-range images to low-dynamic-range displays that faithfully preserve all visual information. However, during the compression process, most reproduction methods face challenges in striking a balance between maintaining global contrast and retaining majority of local details in a real-world scene. To address this problem, this study proposes a new photographic reproduction method that can smoothly take global and local features into account. First, a highlight/shadow region detection scheme is used to obtain prior information to generate a weight map. Second, a mutually hybrid histogram analysis is performed to extract global/local features in parallel. Third, we propose a feature fusion scheme to construct the virtual combined histogram, which is achieved by adaptively fusing global/local features through the use of Gaussian mixtures according to the weight map. Finally, the virtual combined histogram is used to formulate the pixel-wise mapping function. As both global and local features are simultaneously considered, the output image has a natural and visually pleasing appearance. The experimental results demonstrated the effectiveness of the proposed method and the superiority over other seven state-of-the-art methods.


Assuntos
Compressão de Dados , Aumento da Imagem , Algoritmos , Fotografação , Reprodução
4.
Sensors (Basel) ; 19(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615009

RESUMO

Electrical energy management, or demand-side management (DSM), in a smart grid is very important for electrical energy savings. With the high penetration rate of the Internet of Things (IoT) paradigm in modern society, IoT-oriented electrical energy management systems (EMSs) in DSM are capable of skillfully monitoring the energy consumption of electrical appliances. While many of today's IoT devices used in EMSs take advantage of cloud analytics, IoT manufacturers and application developers are devoting themselves to novel IoT devices developed at the edge of the Internet. In this study, a smart autonomous time and frequency analysis current sensor-based power meter prototype, a novel IoT end device, in an edge analytics-based artificial intelligence (AI) across IoT (AIoT) architecture launched with cloud analytics is developed. The prototype has assembled hardware and software to be developed over fog-cloud analytics for DSM in a smart grid. Advanced AI well trained offline in cloud analytics is autonomously and automatically deployed onsite on the prototype as edge analytics at the edge of the Internet for online load identification in DSM. In this study, auto-labeling, or online load identification, of electrical appliances monitored by the developed prototype in the launched edge analytics-based AIoT architecture is experimentally demonstrated. As the proof-of-concept demonstration of the prototype shows, the methodology in this study is feasible and workable.

5.
Sensors (Basel) ; 19(9)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035557

RESUMO

This study investigates combining the property of human vision system and a 2-phase data hiding strategy to improve the visual quality of data-embedded compressed images. The visual Internet of Things (IoT) is indispensable in smart cities, where different sources of visual data are collected for more efficient management. With the transmission through the public network, security issue becomes critical. Moreover, for the sake of increasing transmission efficiency, image compression is widely used. In order to respond to both needs, we present a novel data hiding scheme for image compression with Absolute Moment Block Truncation Coding (AMBTC). Embedding secure data in digital images has broad security uses, e.g., image authentication, prevention of forgery attacks, and intellectual property protection. The proposed method embeds data into an AMBTC block by two phases. In the intra-block embedding phase, a hidden function is proposed, where the five AMBTC parameters are extracted and manipulated to embed the secret data. In the inter-block embedding phase, the relevance of high mean and low mean values between adjacent blocks are exploited to embed additional secret data in a reversible way. Between these two embedding phases, a halftoning scheme called direct binary search is integrated to efficiently improve the image quality without changing the fixed parameters. The modulo operator is used for data extraction. The advantages of this study contain two aspects. First, data hiding is an essential area of research for increasing the IoT security. Second, hiding in compressed images instead of original images can improve the network transmission efficiency. The experimental results demonstrate the effectiveness and superiority of the proposed method.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Segurança Computacional , Humanos , Internet
6.
Sensors (Basel) ; 19(9)2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31052502

RESUMO

In a smart home linked to a smart grid (SG), demand-side management (DSM) has the potential to reduce electricity costs and carbon/chlorofluorocarbon emissions, which are associated with electricity used in today's modern society. To meet continuously increasing electrical energy demands requested from downstream sectors in an SG, energy management systems (EMS), developed with paradigms of artificial intelligence (AI) across Internet of things (IoT) and conducted in fields of interest, monitor, manage, and analyze industrial, commercial, and residential electrical appliances efficiently in response to demand response (DR) signals as DSM. Usually, a DSM service provided by utilities for consumers in an SG is based on cloud-centered data science analytics. However, such cloud-centered data science analytics service involved for DSM is mostly far away from on-site IoT end devices, such as DR switches/power meters/smart meters, which is usually unacceptable for latency-sensitive user-centric IoT applications in DSM. This implies that, for instance, IoT end devices deployed on-site for latency-sensitive user-centric IoT applications in DSM should be aware of immediately analytical, interpretable, and real-time actionable data insights processed on and identified by IoT end devices at IoT sources. Therefore, this work designs and implements a smart edge analytics-empowered power meter prototype considering advanced AI in DSM for smart homes. The prototype in this work works in a cloud analytics-assisted electrical EMS architecture, which is designed and implemented as edge analytics in the architecture described and developed toward a next-generation smart sensing infrastructure for smart homes. Two different types of AI deployed on-site on the prototype are conducted for DSM and compared in this work. The experimentation reported in this work shows the architecture described with the prototype in this work is feasible and workable.

7.
Sensors (Basel) ; 19(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683704

RESUMO

High dynamic range (HDR) has wide applications involving intelligent vision sensing which includes enhanced electronic imaging, smart surveillance, self-driving cars, intelligent medical diagnosis, etc. Exposure fusion is an essential HDR technique which fuses different exposures of the same scene into an HDR-like image. However, determining the appropriate fusion weights is difficult because each differently exposed image only contains a subset of the scene's details. When blending, the problem of local color inconsistency is more challenging; thus, it often requires manual tuning to avoid image artifacts. To address this problem, we present an adaptive coarse-to-fine searching approach to find the optimal fusion weights. In the coarse-tuning stage, fuzzy logic is used to efficiently decide the initial weights. In the fine-tuning stage, the multivariate normal conditional random field model is used to adjust the fuzzy-based initial weights which allows us to consider both intra- and inter-image information in the data. Moreover, a multiscale enhanced fusion scheme is proposed to blend input images when maintaining the details in each scale-level. The proposed fuzzy-based MNCRF (Multivariate Normal Conditional Random Fields) fusion method provided a smoother blending result and a more natural look. Meanwhile, the details in the highlighted and dark regions were preserved simultaneously. The experimental results demonstrated that our work outperformed the state-of-the-art methods not only in several objective quality measures but also in a user study analysis.

8.
Sensors (Basel) ; 19(5)2019 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-30857334

RESUMO

The JPEG-XR encoding process utilizes two types of transform operations: Photo Overlap Transform (POT) and Photo Core Transform (PCT). Using the Device Porting Kit (DPK) provided by Microsoft, we performed encoding and decoding processes on JPEG XR images. It was discovered that when the quantization parameter is >1-lossy compression conditions, the resulting image displays chequerboard block artefacts, border artefacts and corner artefacts. These artefacts are due to the nonlinearity of transforms used by JPEG-XR. Typically, it is not so visible; however, it can cause problems while copying and scanning applications, as it shows nonlinear transforms when the source and the target of the image have different configurations. Hence, it is important for document image processing pipelines to take such artefacts into account. Additionally, these artefacts are most problematic for high-quality settings and appear more visible at high compression ratios. In this paper, we analyse the cause of the above artefacts. It was found that the main problem lies in the step of POT and quantization. To solve this problem, the use of a "uniform matrix" is proposed. After POT (encoding) and before inverse POT (decoding), an extra step is added to multiply this uniform matrix. Results suggest that it is an easy and effective way to decrease chequerboard, border and corner artefacts, thereby improving the image quality of lossy encoding JPEG XR than the original DPK program with no increased calculation complexity or file size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA