RESUMO
Multi-channel and multi-parameter near-infrared spectroscopy (NIRS) has gradually become a new research direction and hot spot due to its ability to provide real-time, continuous, comprehensive indicators of multiple parameters. However, multi-channel and multi-parameter detection may lead to crosstalk between signals. There is still a lack of benchmarks for the evaluation of the reliability, sensitivity, stability and response consistency of the NIRS instruments. In this study, a set of test methods (a human blood model test, ink drop test, multi-channel crosstalk test and multi-parameter crosstalk test) for analyzing crosstalk and verifying the reliability of NIRS was conducted to test experimental verification on a multi-channel (8-channel), multi-parameter (4-parameter) NIRS instrument independently developed by our team. Results show that these tests can be used to analyze the signal crosstalk and verify the reliability, sensitivity, stability and response consistency of the NIRS instrument. This study contributes to the establishment of benchmarks for the NIRS instrument crosstalk and reliability testing. These novel tests have the potential to become the benchmark for NIRS instrument reliability testing.
RESUMO
Maintaining sufficient cerebral oxygen metabolism is crucial for human survival, especially in challenging conditions such as high-altitudes. Human cognitive neural activity is sensitive to fluctuations in oxygen levels. However, there is a lack of publicly available datasets on human behavioural responses and cerebral dynamics assessments during the execution of conflicting tasks in natural hypoxic environments. We recruited 80 healthy new immigrant volunteers (males, aged 20 ± 2 years) and employed the Stroop cognitive conflict paradigm. After a two-week exposure to both high and low-altitudes, the behavioural performance, prefrontal oxygen levels, and electroencephalography (EEG) signals were recorded. Comparative analyses were conducted on the behavioural reaction times and accuracy during Stroop tasks, and statistical analyses of participants' prefrontal oxygen levels and EEG signals were performed. We anticipate that our open-access dataset will contribute to the development of monitoring devices and algorithms, designed specifically for measuring cerebral oxygen and EEG dynamics in populations exposed to extreme environments, particularly among individuals suffering from oxygen deficiency.
Assuntos
Altitude , Eletroencefalografia , Humanos , Masculino , Oxigênio/análise , Tempo de Reação/fisiologia , Teste de Stroop , Adulto Jovem , Emigrantes e ImigrantesRESUMO
Conflict monitoring and processing are crucial components of the human cognitive system, with significant implications for daily life and the diagnosis of cognitive disorders. The Stroop task, combined with brain function detection technology, has been widely employed as a classical paradigm for investigating conflict processing. However, there remains a lack of public datasets that integrate Electroencephalogram (EEG) and functional Near-infrared Spectroscopy (fNIRS) to simultaneously record brain activity during a Stroop task. We introduce a dual-modality Stroop task dataset incorporating 34-channel EEG (sampling frequency is 1000 Hz) and 20-channel high temporal resolution fNIRS (sampling frequency is 100 Hz) measurements covering the whole frontal cerebral cortex from 21 participants (9 females/12 males, aged 23.0 ± 2.3 years). Event-related potential analysis of EEG recordings and activation analysis of fNIRS recordings were performed to show the significant Stroop effect. We expected that the data provided would be utilized to investigate multimodal data processing algorithms during cognitive processing.
Assuntos
Eletroencefalografia , Espectroscopia de Luz Próxima ao Infravermelho , Teste de Stroop , Feminino , Humanos , Masculino , Algoritmos , Córtex CerebralRESUMO
Introduction: Conflict monitoring and processing is an important part of the human cognitive system, it plays a key role in many studies of cognitive disorders. Methods: Based on a Chinese word-color match Stroop task, which included incongruent and neutral stimuli, the Electroencephalogram (EEG) and functional Near-infrared Spectroscopy (fNIRS) signals were recorded simultaneously. The Pearson correlation coefficient matrix was calculated to analyze brain connectivity based on EEG signals. Granger Causality (GC) method was employed to analyze the effective connectivity of bilateral frontal lobes. Wavelet Transform Coherence (WTC) was used to analyze the functional connectivity of the bilateral hemisphere and ipsilateral hemisphere. Results: Results indicated that brain connectivity analysis on EEG signals did not show any significant lateralization, while fNIRS analysis results showed the frontal lobes especially the left frontal lobe play the leading role in dealing with conflict tasks. The human brain shows leftward lateralization while processing the more complicated incongruent stimuli. This is demonstrated by the higher functional connectivity in the left frontal lobe and the information flow from the left frontal lobe to the right frontal lobe. Discussion: Our findings in brain connectivity during cognitive conflict processing demonstrated that the dual modality method combining EEG and fNIRS is a valuable tool to excavate more information through cognitive and physiological studies.