Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chaos ; 33(3): 033113, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37003814

RESUMO

A brush seal has the advantages of adapting to different vibration conditions and increasing the stability of the nonlinear rotor system. In this research, the stability and bifurcations of complex vibrations in a brush-seal rotor system are studied. An analytical seal force model is obtained through the beam theory and mutual coupling dynamics of the bristles and the rotor. The interaction between the bristles and the rotor is clearly depicted by a geometric map. Periodic and chaotic vibrations as well as the corresponding amplitude-frequency characteristics are first predicted by a numerical bifurcation diagram and 3D waterfalls. Discrete dynamic eigenvalue analysis is adopted for a detailed investigation of the stability and bifurcations of nonlinear vibrations. Jumping, quasi-periodic, and half-frequency vibrations are warned during the speeding up and down process. Four separate nonlinear vibration evolving routes are discovered. Two period-doubling bifurcation trees evolving to chaos are illustrated for the observation of global and independent periodic vibrations. Nonlinear vibration illustrations are presented through displacement orbits as well as harmonic amplitudes and phases. Chaotic vibration and unstable semi-analytical vibration solutions are compared. The obtained results and analysis methods provide new perspectives on nonlinear vibrations in the brush-seal rotor system.

2.
Lab Invest ; 102(5): 524-533, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35022505

RESUMO

Ubiquitin-specific protease 35 (USP35) is a member of the ubiquitin-specific protease family (USP), which influences the progression of multiple cancers by deubiquitinating a variety of substrates. In recent years, the specific role of USP35 was begun to be understood. In this study, we investigated the role and underlying molecular mechanisms of USP35 in chemoresistance of non-small cell lung cancer (NSCLC) to cisplatin. Depletion of USP35 increased the sensitivity of NSCLC to cisplatin-induced apoptosis. We screened and identified a potential substrate of USP35, baculoviral IAP repeat containing 3 (BIRC3). Overexpression of USP35 in H460 cells increased the abundance of BIRC3, while USP35 knockdown in Anip973 cells decreased BIRC3 abundance. Notably, USP35 directly interacted with and stabilized BIRC3 through lys48-mediated polyubiquitination via its deubiquitinating enzyme activity. USP35 alleviated cisplatin-induced cell apoptosis by regulating BIRC3 levels in NSCLC cells. Moreover, a significant positive correlation between USP35 and BIRC3 protein expression levels was observed in human NSCLC tissues. Taken together, USP35 plays a vital role in resistance to cisplatin-induced cell death through the overexpression of BIRC3. USP35 might be a potentially novel therapeutic target in human NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Apoptose , Proteína 3 com Repetições IAP de Baculovírus/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Endopeptidases/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteases Específicas de Ubiquitina/genética
3.
BMC Plant Biol ; 22(1): 290, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698040

RESUMO

BACKGROUND: Histone methylation usually plays important roles in plant development through post-translational regulation and may provide a new visual field for heterosis. The histone methyltransferase gene family has been identified in various plants, but its members and functions in hybrid wheat related in heterosis is poorly studied. RESULTS: In this study, 175 histone methyltransferase (HMT) genes were identified in wheat, including 152 histone lysine methyltransferase (HKMT) genes and 23 protein arginine methyltransferase (PRMT) genes. Gene structure analysis, physicochemical properties and subcellular localization predictions of the proteins, exhibited the adequate complexity of this gene family. As an allohexaploid species, the number of the genes (seven HKMTs orthologous groups and four PRMTs orthologous groups) in wheat were about three times than those in diploids and showed certain degrees of conservation, while only a small number of subfamilies such as ASH-like and Su-(var) subfamilies have expanded their members. Transcriptome analysis showed that HMT genes were mainly expressed in the reproductive organs. Expression analysis showed that some TaHMT genes with different trends in various hybrid combinations may be regulated by lncRNAs with similar expression trends. Pearson correlation analysis of the expression of TaHMT genes and two yield traits indicated that four DEGs may participate in the yield heterosis of two-line hybrid wheat. ChIP-qPCR results showed that the histone modifications (H3K4me3, H3K36me3 and H3K9ac) enriched in promoter regions of three TaCCA1 genes which are homologous to Arabidopsis heterosis-related CCA1/LHY genes. The higher expression levels of TaCCA1 in F1 than its parents are positive with these histone modifications. These results showed that histone modifications may play important roles in wheat heterosis. CONCLUSIONS: Our study identified characteristics of the histone methyltransferase gene family and enhances the understanding of the evolution and function of these members in allohexaploid wheat. The causes of heterosis of two-line hybrid wheat were partially explained from the perspective of histone modifications.


Assuntos
Arabidopsis , Triticum , Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Histona Metiltransferases/genética , Vigor Híbrido/genética , Triticum/genética
4.
Environ Res ; 203: 111817, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34352233

RESUMO

Hydrogen peroxide (H2O2) is evaluated as a potential replacement for chlorine to control biofouling in membrane bioreactors (MBRs). However, H2O2 might diffuse into the mixed liquor and damage microorganisms during membrane cleaning. This study comprehensively analyzed the impacts of H2O2 on microbes. Key enzymes involved in phenol biodegradation were inhibited with H2O2 concentration increased, and thus phenol degradation efficiency was decreased. Increase of lactic dehydrogenase (LDH) and intracellular reactive oxygen species (ROS) indicated more severe cell rupture with H2O2 concentration increased. At the same H2O2 concentration, Extracellular polymeric substances (EPS) extraction further led to inhibiting the activity of key enzymes, decreasing phenol degradation efficiency, and enhancing LDH release and ROS production, demonstrating that the existence of EPS moderated the adverse impacts on microbes. Spectroscopic characterization revealed the increase of H2O2 decreased tryptophan protein-like substances, protein-associated bonds and polysaccharide-associated bonds. Hydroxyl and amide groups in EPS were attacked, which might lead to the consumption of H2O2, indicated EPS protect the microorganism through sacrificial reaction with H2O2.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Reatores Biológicos , Peróxido de Hidrogênio , Indicadores e Reagentes
5.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897633

RESUMO

Temperature-sensitive genic male sterile (TGMS) line Beijing Sterility 366 (BS366) has been utilized in hybrid breeding for a long time, but the molecular mechanism underlying male sterility remains unclear. Expression arrays, small RNA, and degradome sequencing were used in this study to explore the potential role of miRNA in the cold-induced male sterility of BS366. Microspore observation showed defective cell plates in dyads and tetrads and shrunken microspores at the vacuolated stage. Differential regulation of Golgi vesicle transport, phragmoplast formation, sporopollenin biosynthesis, pollen exine formation, and lipid metabolism were observed between cold and control conditions. Pollen development was significantly represented in the 352 antagonistic miRNA-target pairs in the integrated analysis of miRNA and mRNA profiles. The specific cleavage of ARF17 and TIR1 by miR160 and miR393 were found in the cold-treated BS366 degradome, respectively. Thus, the cold-mediated miRNAs impaired cell plate formation through repression of Golgi vesicle transport and phragmoplast formation. The repressed expression of ARF17 and TIR1 impaired pollen exine formation. The results of this study will contribute to our understanding of the roles of miRNAs in male sterility in wheat.


Assuntos
MicroRNAs , Infertilidade das Plantas , Triticum , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Melhoramento Vegetal , Infertilidade das Plantas/genética , Temperatura , Triticum/genética
6.
BMC Genomics ; 22(1): 911, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930131

RESUMO

BACKGROUND: Known as the prerequisite component for the heterosis breeding system, the male sterile line determines the hybrid yield and seed purity. Therefore, a deep understanding of the mechanism and gene network that leads to male sterility is crucial. BS366, a temperature-sensitive genic male sterile (TGMS) line, is male sterile under cold conditions (12 °C with 12 h of daylight) but fertile under normal temperature (20 °C with 12 h of daylight). RESULTS: During meiosis, BS366 was defective in forming tetrads and dyads due to the abnormal cell plate. During pollen development, unusual vacuolated pollen that could not accumulate starch grains at the binucleate stage was also observed. Transcriptome analysis revealed that genes involved in the meiotic process, such as sister chromatid segregation and microtubule-based movement, were repressed, while genes involved in DNA and histone methylation were induced in BS366 under cold conditions. MethylRAD was used for reduced DNA methylation sequencing of BS366 spikes under both cold and control conditions. The differentially methylated sites (DMSs) located in the gene region were mainly involved in carbohydrate and fatty acid metabolism, lipid metabolism, and transport. Differentially expressed and methylated genes were mainly involved in cell division. CONCLUSIONS: These results indicated that the methylation of genes involved in carbon metabolism or fatty acid metabolism might contribute to male sterility in BS366 spikes, providing novel insight into the molecular mechanism of wheat male sterility.


Assuntos
Transcriptoma , Triticum , Metilação de DNA , Pólen/genética , Temperatura , Triticum/genética
7.
BMC Genomics ; 22(1): 310, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926387

RESUMO

BACKGROUND: DNA methyltransferase (DMT) genes contribute to plant stress responses and development by de novo establishment and subsequent maintenance of DNA methylation during replication. The photoperiod and/or temperature-sensitive genic male sterile (P/TGMS) lines play an important role in hybrid seed production of wheat. However, only a few studies have reported on the effect of DMT genes on temperature-sensitive male sterility of wheat. Although DMT genes have been investigated in some plant species, the identification and analysis of DMT genes in wheat (Triticum aestivum L.) based on genome-wide levels have not been reported. RESULTS: In this study, a detailed overview of phylogeny of 52 wheat DMT (TaDMT) genes was presented. Homoeolog retention for TaDMT genes was significantly above the average retention rate for whole-wheat genes, indicating the functional importance of many DMT homoeologs. We found that the strikingly high number of TaDMT genes resulted mainly from the significant expansion of the TaDRM subfamily. Intriguingly, all 5 paralogs belonged to the wheat DRM subfamily, and we speculated that tandem duplications might play a crucial role in the TaDRM subfamily expansion. Through the transcriptional analysis of TaDMT genes in a TGMS line BS366 and its hybrids with the other six fertile lines under sterile and fertile conditions, we concluded that TaCMT-D2, TaMET1-B1, and TaDRM-U6 might be involved in male sterility in BS366. Furthermore, a correlation analysis showed that TaMET1-B1 might negatively regulate the expression of TaRAFTIN1A, an important gene for pollen development, so we speculated regarding an epigenetic regulatory mechanism underlying the male sterility of BS366 via the interaction between TaMET1-B1 and TaRAFTIN1A. CONCLUSIONS: Our findings presented a detailed phylogenic overview of the DMT genes and could provide novel insights into the effects of DMT genes on TGMS wheat.


Assuntos
Infertilidade Masculina , Triticum , DNA , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Humanos , Masculino , Metiltransferases , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Triticum/genética , Triticum/metabolismo
8.
Fish Shellfish Immunol ; 111: 227, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33612357

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of Editors-in-Chief and first Author. The article duplicates significant parts of a paper that had already appeared in Fish & Shellfish Immunology, Volume 93 (2019) 726-731, https://doi.org/10.1016/j.fsi.2019.06.052. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. The article was published without the knowledge of the co-authors.

9.
Ecotoxicology ; 30(7): 1408-1418, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33471269

RESUMO

Trichloroethylene (TCE) is one of the most common groundwater pollutants. It is carcinogenic, teratogenic, mutagenic and poses a serious threat to human health and the environment. Therefore, reducing the environmental toxicity of TCE is of great significance. Anaerobic sludge was cultured and acclimated in an upflow anaerobic sludge blanket (UASB) reactor in this study. The Chemical Oxygen Demand (COD) concentration of the influent was approximately 2500 mg L-1, and the TCE concentration of the influent ranged from 1.46 mg L-1 to 73 mg L-1. After biodegradation of the anaerobic microflora, the COD removal rate was approximately 85%, and the TCE removal rate was over 85%. The microbial community of anaerobic sludge was analysed by 16 S rDNA clone libray and 454 high-throughput sequencing. Through analysis of the sequencing results, we found that there were a variety of acid-forming bacteria, anaerobic dechlorinating bacteria, and methanogenic bacteria. Based on the analysis of microflora function, it was speculated that the TCE metabolic pathway took place in UASB reactors. Desulfovibrio and Syntrophobacter provided an anaerobic environment, and acid-forming bacteria metabolise organic compounds into hydrogen. With Dehalobacter and Geobacter, TCE as an electron acceptor is dechlorinated and reduced under the anaerobic environment, in which hydrogen acts as an electron donor. By this, we clarified the metabolic pathway for improving TCE bioremediation.


Assuntos
Esgotos , Tricloroetileno , Anaerobiose , Bactérias Anaeróbias , Reatores Biológicos , Humanos , Eliminação de Resíduos Líquidos
10.
Ecotoxicology ; 30(7): 1454-1464, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33094413

RESUMO

Plant associated-bacteria can facilitate the host plant in overcoming contaminant-induced stress responses as well as improve plant development and growth. In this study, a successful approach was reported to reduce the Dibutyl phthalate (DBP) levels of polluted soil and, consequently, to improve cucumber growth. DBP suppressed development of cucumber seedings significantly, damage sub-cellular of root, especially the biomembrane system, and affected the microbial community structures of the soil. When DBP was applied at a concentration of 5 mg/kg to cucumber seedlings inoculated with degrading strain DNB-S1, the DBP residue in roots was very low. When the cucumber plants were exposed to DBP stress over 20 and 40 mg/kg DBP, the DBP residues in the roots inoculated with degrading strain DNB-S1 were reduced by 36.5% and 40.42% respectively, compared with the non-inoculation group. Moreover, DBP dissipation in rhizosphere soil is accelerated through inoculation with DNB-S1 which could effectively relieve the pressure of DBP stress on plant. The dry weight of cucumber roots inoculated with DBP-degrading bacterium was higher than that of non-inoculated seedlings. According to ultrastructural micrographs, the DBP-degrading bacteria could considerably alleviate the damaging effect of DBP on cucumber root cell organs. The application of strain DNB-S1 could efficiently alleviated the stress of DBP on the microbial community structure.


Assuntos
Cucumis sativus , Dibutilftalato , Biodegradação Ambiental , Dibutilftalato/toxicidade , Raízes de Plantas , Pseudomonas , Rizosfera , Microbiologia do Solo
11.
Fish Shellfish Immunol ; 98: 605-610, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31669278

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of Editors-in-Chief and first Author. The article duplicates significant parts of a paper that had already appeared in Fish & Shellfish Immunology, Volume 93 (2019) 726-731, https://doi.org/10.1016/j.fsi.2019.06.052. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. The article was published without the knowledge of the co-authors.

12.
Ecotoxicology ; 29(6): 801-813, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32445014

RESUMO

Trichloroethylene (TCE) is the most ubiquitous halogenated organic pollutant in the environment, it is one of the 129 priority control pollutants. In order to clarify the influence of TCE on microorganisms and nitrogen transformation in Mollisol is the core purpose of this study. Results showed that 10 mg kg-1 TCE is the concentration limit of ammonification in Mollisol. When the concentration of TCE reached 10 mg kg-1 and the effect lasted for over 7 days, the process of ammonia oxidation to nitric acid in Mollisol will be affected. TCE affected the process of nitrate (NO3-) transformation into nitrite (NO2-) by affecting the activity of nitrate reductase, thereby affected the denitrification process in soil. When the concentration of TCE is more than 10 mg kg-1 it reduced the ability of soil microorganisms to obtain nitrogen, thereby affecting soil nitrogen transformation. RDA (Redundancy analysis) showed that the activity of nitrate reductase and the number of nitrifying bacteria and denitrifying bacteria in soil was negatively correlated with the incubation of TCE. In addition, soil nitrate reductase, nitrite reductase, peroxidase activity, ammonifying bacteria, nitrifying bacteria and denitrifying bacteria were negatively correlated with TCE concentration. Beyond that PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) of functional gene structure depend on KEGG (Kyoto Encyclopedia of Genes and Genomes) showed that 20 mg kg-1 TCE significantly inhibited the metabolism of energy and other substances in Mollisol. Based on the above, it is found that TCE significantly affected nitrification and denitrification in Mollisol, thus the nitrogen transformation in Mollisol was affected by TCE contamination.


Assuntos
Microbiota/efeitos dos fármacos , Nitrificação/efeitos dos fármacos , Poluentes do Solo/toxicidade , Tricloroetileno/toxicidade , Biodegradação Ambiental/efeitos dos fármacos , Nitrogênio , Microbiologia do Solo
13.
J Environ Manage ; 274: 111190, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32771773

RESUMO

The objectives of this study were to clarify the distribution as well as the removal mechanism of antibiotic resistance genes (ARGs) within three sludge treatment wetlands (STWs) during a loading period of two years. Three STW units were constructed and run during the loading period: Unit 1 (U1) built with aeration tubes, Unit 2 (U2) built with aeration tubes and reeds, and Unit 3 (U3) built with reeds only. All targeted ARGs, intI1, and 16S rRNA were detected in residual sludge in the order of magnitude: 16S rRNA>sul1>intI1>sul2>tetC>tetA>ermB. The abundance of the five targeted ARGs, intI1, and 16S rRNA increased in residual sludge, during the loading period, which may be due to the increase in bacteria caused by the continuous import of exogenous nutrients. However, STWs can also remove ARGs from sewage during the loading period and the mean removal efficiency of five resistance genes was 73.0%. The removal rates of intI1 and 16S rRNA were 73.5% and 78.6%, respectively. Positive correlations were detected in abundance of most ARGs and intI1, as well as 16S rRNA (P < 0.05), indicating intI1 plays a vital part in the propagation of ARGs. The removal of bacteria harboring these genes also occurs in the STW units.


Assuntos
Esgotos , Áreas Alagadas , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , RNA Ribossômico 16S/genética , Águas Residuárias/análise
14.
J Environ Manage ; 260: 110159, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32090846

RESUMO

Sludge treatment wetlands (STWs) can effectively stabilize sludge, but the microbial community structure in this process is not well characterized. The purpose of this study was to investigate the characteristics of organic matter and nutrient removal and bacterial community in sludge treatment wetlands for treating sewage sludge. Three STWs units included unit STW1 with aeration tubes, unit STW2 with aeration tubes and reed planting and unit STW3 with reed planting. The degradation of organic matter and nutrient, sludge dewatering performance and microbial community dynamics in STWs were examined in feeding and resting periods. Our results showed that during the entire process of the experiment, total solids (TS) in STWs increased to 24-31%, volatile solids (VS) in STWs reduced to 43-47%, while the total kjeldahl nitrogen (TKN) and total phosphorous (TP) concentrations in STWs decreased to 25.1-35.5 mg/g d. w and 5.4-6.2 mg/g d. w. However, the removal efficiencies of organic matter and nutrient in STWs in the feeding period were higher than those in the resting period. Meanwhile, unit STW2 has the best removal performance in organic matter and nutrients during the whole experiment. Microbial community analysis using Illumina MiSeq sequencing technology showed that growth of plants in STWs improved bacterial diversity and richness which corresponded to high removal rates of organic matter and nutrient. Besides, principal coordinate analysis (PCoA) showed that the bacterial community composition in STWs obviously altered between the feeding and the resting periods.


Assuntos
Esgotos , Áreas Alagadas , Bactérias , Nutrientes , Fósforo , Eliminação de Resíduos Líquidos
15.
Fish Shellfish Immunol ; 94: 166-174, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31446081

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of Editors-in-Chief and first Author. The article duplicates significant parts of a paper that had already appeared in Fish & Shellfish Immunology, Volume 93 (2019) 726-731, https://doi.org/10.1016/j.fsi.2019.06.052. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. The first author informed the journal that the article was published without the knowledge of the co-authors.


Assuntos
Burkholderiales/metabolismo , Carpas/fisiologia , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Qualidade da Água , Fenômenos Fisiológicos da Nutrição Animal , Animais , Aquicultura , Carpas/crescimento & desenvolvimento , Carpas/microbiologia , Digestão , Resistência à Doença , Microbioma Gastrointestinal , Transdução de Sinais
16.
Fish Shellfish Immunol ; 93: 726-731, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31265912

RESUMO

Application of traditional bait in aquaculture caused environment pollution and disease frequent occurrence. Residual coconut could be re-utilized to culture Spinibarbus sinensis as dietary supplement. Therefore, a novel integrated system of the improvement of yield, antioxidant and nonspecific immunity of Spinibarbus sinensis by dietary residual coconut was proposed and investigated. Spinibarbus sinensis could grow well in all supplement residual coconut groups. Survival rate, yield, whole fish body composition under 15-45% groups were increased compared with control group (CK). Bioactive substances (polyphenols and vitamin) in residual coconut enhanced AKP, ACP, phagocytic, SOD, CAT activities through up-regulating AKP, ACP, SOD, CAT genes expression levels. Theoretical analysis showed bioactive substances regulated these genes expressions and enzyme activities as stimulus signal, component, active center. Moreover, residual coconut improved mTOR and NF-kB signaling pathway. Furthermore, residual coconut inhibited Aeromonas hydrophila that increased resistance to diseases. This technology completed the solid waste recovery and the Spinibarbus sinensis culture simultaneously.


Assuntos
Antioxidantes/metabolismo , Óleo de Coco/metabolismo , Cyprinidae/imunologia , Resistência à Doença/imunologia , Imunidade Inata/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ração Animal/análise , Animais , Aquicultura/métodos , Óleo de Coco/administração & dosagem , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Resistência à Doença/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estudos de Viabilidade
17.
Ecotoxicol Environ Saf ; 184: 109595, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470249

RESUMO

Trichloroethylene (TCE), one of 129 kinds of priority pollutants, is the most common halogenated organic pollutant in the environment. To explore the changes in soil physicochemical properties and biological activities then clarify the effects of these factors on bacterial, fungal and actinomycetes communities in Mollisol under TCE stress is the significance of our research. The results indicated that when TCE concentration was greater than 10 mg kg-1, soil quality declined and soil decomposition of organic matter and cycling of mineral nutrients were inhibited through an effect on soil microbial biomass. Operational taxonomic units (OTUs) richness of the bacteria in Mollisol was altered by TCE contamination. The SChao1 and HShannon indices of bacterial communities in Mollisol decreased when 40 mg kg-1 TCE was applied. Meanwhile, the OTU richness of fungi in Mollisol was altered by TCE contamination. The HShannon indices of the fungal communities in Mollisol were inhibited by higher TCE concentrations (20 and 40 mg kg-1 TCE). TCE altered the content of some bacteria, fungi and actinomycetes involved in soil carbon and nitrogen cycling and metabolism, such as Acidobacteria, Proteobacteria, Planctomycetes, Chytridiomycota, Streptomycetales, Pseudonocardiales, Propionibacteriales and Rhizobiales, and thus influenced nutrient cycling and the process of energy metabolism in Mollisol. In addition, redundancy analysis (RDA) results indicated that physicochemical properties and biological activities under TCE contamination significantly affected soil microbial community composition thus confirming that TCE interfered with the carbon and nitrogen cycling and metabolism of soil microorganisms. The results of this study are of great importance for revealing the effects of TCE stress on the microbiological characteristics of Mollisol, and also provide more useful information for determining the potential ecological risk of organic pollutants in Mollisol.


Assuntos
Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Tricloroetileno/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biomassa , Carbono/análise , Carbono/metabolismo , Fungos/efeitos dos fármacos , Fungos/metabolismo , Microbiota/efeitos dos fármacos , Nitrogênio/análise , Nitrogênio/metabolismo , Poluentes do Solo/análise , Tricloroetileno/análise
18.
Ecotoxicol Environ Saf ; 173: 411-418, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30798184

RESUMO

A Pseudomonas sp. DNE-S1 (GenBank accession number MF803832), able to degrade DEP in a wide range of acid-base conditions, was isolated from landfill soil. The growth kinetics of DNE-S1 on DEP followed the inhibition model. Fe3+ could promote the degradation ability of DNE-S1 to DEP probably by over-expression of the gene phthalate dihydrodiol dehydrogenase (ophB) and phthalate dioxygenase ferredoxin reductase (ophA4). The degradation rate of DEP (500 mg L-1 at 12 h) increased by 14.5% in the presence of Fe3+. Cu2+, Zn2+, and Mn2+ showed an inhibiting effect on the degradation performance of the strain and could alter the cellular morphology, surface area and volume of DNE-S1. Three degradation intermediates, namely ethyl methyl phthalate (EMP), dimethyl phthalate (DMP), and phthalic acid (PA), were detected in the biodegradation of DEP, and the biochemical pathway of DEP degradation was proposed. This study provides new information on the biochemical pathways and the responsible genes involved in DEP degradation.


Assuntos
Ácidos Ftálicos/metabolismo , Pseudomonas/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Cinética , Metais Pesados/toxicidade , Pseudomonas/efeitos dos fármacos , Poluentes do Solo/toxicidade , Instalações de Eliminação de Resíduos
19.
Bioprocess Biosyst Eng ; 42(8): 1375-1384, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31172262

RESUMO

Simultaneous (SPW and propyzamide) wastewater treatment and the production of biochemicals by Rhodopseudomonas capsulata (R. capsulata) were investigated with supplement of soybean processing wastewater (SPW). Compared to control group, propyzamide was removed and biochemicals production were enhanced with the supplement of SPW. Propyzamide induced camH gene expression through activating MAPKKKs gene in MAPK signal transduction pathway. The induction of camH gene and CamH occurs after 1 day for R. capsulata. However, lack of organics in original wastewater did not maintain R. capsulata growth for over 1 day. The supplement of SPW provided sufficient carbon source for R. capsulata under three addition dosages. This new method resulted in the mixed (SPW and propyzamide) wastewater treatment and improvement of biochemicals simultaneously, as well as the realization of reutilization of wastewater and R. capsulata as sludge. Meanwhile, high-order nonlinear mathematical model of the relationship between propyzamide removal rate, Xt and Xt/r, was established.


Assuntos
Benzamidas , Glycine max/química , Rodopseudomonas/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos , Águas Residuárias/microbiologia , Benzamidas/química , Benzamidas/metabolismo
20.
J Environ Manage ; 240: 231-237, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30952043

RESUMO

In this study, antibiotics removal, sludge stabilization and the change in the bacterial community in sludge treatment wetlands (STWs) were investigated in different seasons. Pilot-scale STWs were characterized for sludge stabilization and the fate of antibiotics in surplus sludge applied during different seasons in three different configurations. The three configurations were unit S1 with ventilation, unit S2 with ventilation and reed plantings and unit S3 with reed plantings. The antibiotics used were ciprofloxacin, azithromycin and oxytetracycline and their degradation, degree of sludge stabilization and bacterial community dynamics were monitored. The results showed that the removal of antibiotics and reduction in the amount of organics in the planted units S2 and S3 were higher than those in the unplanted unit S1, especially in summer. The antibiotic removal efficiency in the planted unit S2, which was equipped with aeration tubes, was the highest over the entire test period. Bacterial community was analyzed by IlluminaMiSeq sequencing of the 16SrRNA gene, showed that the presence of plants in STWs enhanced microbial diversity and richness which promote the removal of antibiotics and sludge stabilization. Proteobacteria, Bacteroidetes and Firmicutes were dominant in the bacterial communities, with Thiobacillus, Dechloromonas and Pseudomonas occurring as dominant genera.


Assuntos
Esgotos , Áreas Alagadas , Antibacterianos , Bactérias , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA