Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 618(7963): 63-68, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37259002

RESUMO

Titanium alloys are advanced lightweight materials, indispensable for many critical applications1,2. The mainstay of the titanium industry is the α-ß titanium alloys, which are formulated through alloying additions that stabilize the α and ß phases3-5. Our work focuses on harnessing two of the most powerful stabilizing elements and strengtheners for α-ß titanium alloys, oxygen and iron1-5, which are readily abundant. However, the embrittling effect of oxygen6,7, described colloquially as 'the kryptonite to titanium'8, and the microsegregation of iron9 have hindered their combination for the development of strong and ductile α-ß titanium-oxygen-iron alloys. Here we integrate alloy design with additive manufacturing (AM) process design to demonstrate a series of titanium-oxygen-iron compositions that exhibit outstanding tensile properties. We explain the atomic-scale origins of these properties using various characterization techniques. The abundance of oxygen and iron and the process simplicity for net-shape or near-net-shape manufacturing by AM make these α-ß titanium-oxygen-iron alloys attractive for a diverse range of applications. Furthermore, they offer promise for industrial-scale use of off-grade sponge titanium or sponge titanium-oxygen-iron10,11, an industrial waste product at present. The economic and environmental potential to reduce the carbon footprint of the energy-intensive sponge titanium production12 is substantial.

2.
J Immunol ; 206(5): 987-998, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33504616

RESUMO

Prophylactic human papillomavirus (HPV) vaccines are commercially available for prevention of infection with cancerogenic HPV genotypes but are not able to combat pre-existing HPV-associated disease. In this study, we designed a nanomaterial-based therapeutic HPV vaccine, comprising manganese (Mn4+)-doped silica nanoparticles (Mn4+-SNPs) and the viral neoantigen peptide GF001 derived from the HPV16 E7 oncoprotein. We show in mice that Mn4+-SNPs act as self-adjuvants by activating the inflammatory signaling pathway via generation of reactive oxygen species, resulting in immune cell recruitment to the immunization site and dendritic cell maturation. Mn4+-SNPs further serve as Ag carriers by facilitating endo/lysosomal escape via depletion of protons in acidic endocytic compartments and subsequent Ag delivery to the cytosol for cross-presentation. The Mn4+-SNPs+GF001 nanovaccine induced strong E7-specific CD8+ T cell responses, leading to remission of established murine HPV16 E7-expressing solid TC-1 tumors and E7-expressing transgenic skin grafts. This vaccine construct offers a simple and general strategy for therapeutic HPV and potentially other cancer vaccines.


Assuntos
Antígenos de Neoplasias/imunologia , Manganês/imunologia , Nanopartículas/administração & dosagem , Neoplasias/imunologia , Neoplasias/terapia , Dióxido de Silício/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Células Cultivadas , Feminino , Humanos , Imunização/métodos , Imunoterapia/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Papillomaviridae/imunologia , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Vacinas contra Papillomavirus/imunologia , Polimorfismo de Nucleotídeo Único/imunologia , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/imunologia
3.
J Environ Manage ; 302(Pt A): 114031, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34735836

RESUMO

In order to realize the sustainable utilization of waste oyster shell and develop a targeted removal technology for cadmium. A novel ion-imprinted oyster shell material (IIOS) was prepared by surface imprinting technique. The prepared samples were characterized by scanning electron microscope, Fourier infrared spectrometer, X-ray diffractometer, thermogravimetric analysis and N2 adsorption-desorption. The adsorption performances of IIOS for Cd(II) from aqueous solution were studied by the single factor sequential batch, kinetics, isotherms, selectivity and recycling experiments. The characterization researches showed that IIOS was successfully prepared. The adsorption experiments indicated that the adsorption process reached equilibrium within 240 min; the maximum adsorption capacity was up to 69.1 mg g-1 with the initial Cd(II) concentration of 75 mg L-1 at pH 5; the adsorption process fitted well to the pseudo-second-order model and the Langmuir isotherm model, which revealed the chemisorption characteristic of Cd(II). Moreover, IIOS exhibited a good targeted adsorption of Cd(II) in several binary competition systems owing to the present of these imprinted cavities. The recycling experiment showed that the targeted removal ratio of IIOS for Cd(II) remained above 80% after used six times. The results of this study indicated that it is a promising prospect for waste oyster shell used as IIOS to dispose heavy metals in wastewater.


Assuntos
Ostreidae , Poluentes Químicos da Água , Adsorção , Animais , Cádmio/análise , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
4.
Br J Cancer ; 130(12): 1889, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778221
5.
Nat Mater ; 17(4): 349-354, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29555999

RESUMO

Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N-1 and dielectric permittivity ε33/ε0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.

6.
J Cardiovasc Pharmacol ; 74(2): 98-104, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31356544

RESUMO

BACKGROUND: Cytochrome P450 17A1 (CYP17A1) catalyzes the formation and metabolism of steroid hormones and is required for cortisol and androgens. There is increasing evidence that CYP17A1 plays an important role in the development of coronary heart disease (CHD). However, the association of CYP17A1 polymorphisms and CHD susceptibility is still not clear. METHODS: We conducted a case-control study with 396 CHD cases and 461 healthy controls from Hainan province, China. Using the Agena MassARRAY platform, we genotyped 4 genetic variants (rs3740397, rs1004467, rs4919687, and rs3781286) in CYP17A1. Logistic regression analysis was used to assess the association of CYP17A1 polymorphisms with CHD risk by odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: It showed that A allele of CYP17A1 rs4919687 carried with a 1.59-fold increased risk of CHD (OR = 1.59; 95% CI = 1.26-1.99; P < 0.001). Also, rs4919687 was significantly associated with CHD risk under various models (homozygote: OR = 3.60; 95% CI = 1.64-7.83; P = 0.001; dominant: OR = 1.51; 95% CI = 1.06-2.13; P = 0.021; recessive: OR = 3.28; 95% CI = 1.51-7.14; P = 0.003; additive: OR = 1.56; 95% CI = 1.17-2.07; P = 0.002). Moreover, analysis showed that Ars1004467 Ars4919687 haplotype was a protective factor of CHD (OR = 0.64; 95% CI = 0.48-0.86; P = 0.002). CONCLUSIONS: Our study suggests that CYP17A1 polymorphisms are associated with CHD susceptibility in the Hainan Han Chinese population.


Assuntos
Doença das Coronárias/genética , Polimorfismo de Nucleotídeo Único , Esteroide 17-alfa-Hidroxilase/genética , Adulto , Idoso , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Doença das Coronárias/diagnóstico , Doença das Coronárias/etnologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Haplótipos , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco
7.
Phys Rev Lett ; 118(1): 017601, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106439

RESUMO

Heterogeneous ferroelastic transition that produces hierarchical 90° tetragonal nanodomains via mechanical loading and its effect on facilitating ferroelectric domain switching in relaxor-based ferroelectrics were explored. Combining in situ electron microscopy characterization and phase-field modeling, we reveal the nature of the transition process and discover that the transition lowers by 40% the electrical loading threshold needed for ferroelectric domain switching. Our results advance the fundamental understanding of ferroelectric domain switching behavior.

8.
Phys Rev Lett ; 117(2): 027601, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447524

RESUMO

Reversible ferroelectric domain (FD) manipulation with a high spatial resolution is critical for memory storage devices based on thin film ferroelectric materials. FD can be manipulated using techniques that apply heat, mechanical stress, or electric bias. However, these techniques have some drawbacks. Here we propose to use an electron beam with an omnidirectional electric field as a tool for erasable stable ferroelectric nanodomain manipulation. Our results suggest that local accumulation of charges contributes to the local electric field that determines domain configurations.

9.
Science ; 384(6692): 158-159, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603512

RESUMO

A design strategy boosts electrical properties of ferroelectric materials and devices.

10.
ACS Appl Mater Interfaces ; 16(12): 15548-15557, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488178

RESUMO

Artificial superhydrophobic surfaces hold significant potential in various domains, encompassing self-cleaning, droplet manipulation, microfluidics, and thermal management. Consequently, there is a burgeoning demand for cost-effective, mass-producible, and easily fabricated superhydrophobic surfaces for commercial and industrial applications. This research introduces an efficient, uncomplicated method for constructing hierarchical structures on hard substrates such as binderless tungsten carbide (WC) and glass substrates. The WC substrates were processed by using electrical discharge machining (EDM) with a magnetic-assisted self-assembly sheet electrode. The resultant surfaces comprised micropillars/microgrooves and diminutive craters formed by discharge and ablation, respectively. These surfaces exhibited superior hydrophobic properties, which can be attributed to the modified surface energy and surface texture construction. Our study indicates that a superhydrophobic surface can be achieved on a textured binderless WC. The maximum contact angle and minimum roll-off angle of the hierarchical structure induced by EDM with a magnetic-assisted self-assembly sheet electrode are about 158 and 5°, respectively. The advancing and receding angles are about 161° ± 2 and 157° ± 3, respectively, when the base is tilted at 3°. Furthermore, we have successfully replicated this superhydrophobic structured surface on glass substrates utilizing glass molding technology. This innovative approach to creating superhydrophobic surfaces on hard materials paves the way for the mass production of functional structures on other materials, such as metallic glass, titanium alloy, and mold steel. Most crucially, the proposed fabrication technique offers a straightforward, cost-effective route for creating functional surfaces, rendering it attractive for large-scale industrial production due to its considerable application prospects.

11.
Adv Mater ; 36(11): e2310559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084796

RESUMO

Dielectric energy-storage capacitors, known for their ultrafast discharge time and high-power density, find widespread applications in high-power pulse devices. However, ceramics featuring a tetragonal tungsten bronze structure (TTBs) have received limited attention due to their lower energy-storage capacity compared to perovskite counterparts. Herein, a TTBs relaxor ferroelectric ceramic based on the Gd0.03 Ba0.47 Sr0.485-1.5 x Smx Nb2 O6 composition, exhibiting an ultrahigh recoverable energy density of 9 J cm-3 and an efficiency of 84% under an electric field of 660 kV cm-1 is reported. Notably, the energy storage performance of this ceramic shows remarkable stability against frequency, temperature, and cycling electric field. The introduction of Sm3+ doping is found to create weakly coupled polar nanoregions in the Gd0.03 Ba0.47 Sr0.485 Nb2 O6 ceramic. Structural characterizations reveal that the incommensurability parameter increases with higher Sm3+ content, indicative of a highly disordered A-site structure. Simultaneously, the breakdown strength is also enhanced by raising the conduction activation energy, widening the bandgap, and reducing the electric field-induced strain. This work presents a significant improvement on the energy storage capabilities of TTBs-based capacitors, expanding the material choice for high-power pulse device applications.

12.
Nat Commun ; 15(1): 5869, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997263

RESUMO

As a vital material utilized in energy storage capacitors, dielectric ceramics have widespread applications in high-power pulse devices. However, the development of dielectric ceramics with both high energy density and efficiency at high temperatures poses a significant challenge. In this study, we employ high-entropy strategy and band gap engineering to enhance the energy storage performance in tetragonal tungsten bronze-structured dielectric ceramics. The high-entropy strategy fosters cation disorder and disrupts long-range ordering, consequently regulating relaxation behavior. Simultaneously, the reduction in grain size, elevation of conductivity activation energy, and increase in band gap collectively bolster the breakdown electric strength. This cascade effect results in outstanding energy storage performance, ultimately achieving a recoverable energy density of 8.9 J cm-3 and an efficiency of 93% in Ba0.4Sr0.3Ca0.3Nb1.7Ta0.3O6 ceramics, which also exhibit superior temperature stability across a broad temperature range up to 180 °C and excellent cycling reliability up to 105. This research presents an effective method for designing tetragonal tungsten bronze dielectric ceramics with ultra-high comprehensive energy storage performance.

13.
Heliyon ; 10(14): e34181, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100475

RESUMO

Enhancing cardiomyocyte proliferation is essential to reverse or slow down the heart failure progression in many cardiovascular diseases such as myocardial infarction (MI). Long non-coding RNAs (lncRNAs) have been reported to regulate cardiomyocyte proliferation. In particular, lncRNA urothelial carcinoma-associated 1 (lncUCA1) played multiple roles in regulating cell cycle progression and cardiovascular diseases, making lncUCA1 a potential target for promoting cardiomyocyte proliferation. However, the role of lncUCA1 in cardiomyocyte proliferation remains unknown. This study aimed at exploring the function and underlying molecular mechanism of lncUCA1 in cardiomyocyte proliferation. Quantitative RT-PCR showed that lncUCA1 expression decreased in postnatal hearts. Gain-and-loss-of-function experiments showed that lncUCA1 positively regulated cardiomyocyte proliferation in vitro and in vivo. The bioinformatics program identified miR-128 as a potential target of lncUCA1, and loss of miR-128 was reported to promote cardiomyocyte proliferation by inhibiting the SUZ12/P27 pathway. Luciferase reporter assay, qRT-PCR, western blotting, and immunostaining experiments further revealed that lncUCA1 acted as a ceRNA of miR-128 to upregulate its target SUZ12 and downregulate P27, thereby increasing cyclin B1, cyclin E, CDK1 and CDK2 expression to promote cardiomyocyte proliferation. In conclusion, upregulation of lncRNA UCA1 promoted cardiomyocyte proliferation by inhibiting the miR-128/SUZ12/P27 pathway. Our results indicated that lncUCA1 might be a new therapeutic target for stimulating cardiomyocyte proliferation.

14.
Adv Mater ; : e2406219, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135405

RESUMO

In pulse power systems, multilayer ceramic capacitors (MLCCs) encounter significant challenges due to the heightened loading electric field (E), which can lead to fatigue damage and ultrasonic concussion caused by electrostrictive strain. To address these issues, an innovative strategy focused on achieving an ultra-weak polarization-strain coupling effect is proposed, which effectively reduces strain in MLCCs. Remarkably, an ultra-low electrostrictive coefficient (Q33) of 0.012 m4 C-2 is achieved in the composition 0.55(Bi0.5Na0.5)TiO3-0.45Pb(Mg1/3Nb2/3)O3, resulting in a significantly reduced strain of 0.118% at 330 kV cm-1. At the atomic scale, the local structural heterogeneity leads to an expanded and loose lattice structure, providing ample space for large ionic displacement polarization instead of lattice stretching when subjected to the applied E. This unique behavior not only promotes energy storage performance (ESP) but also accounts for the observed ultra-low Q33 and strain. Consequently, the MLCC device exhibits an impressive energy storage density of 14.6 J cm-3 and an ultrahigh efficiency of 93% at 720 kV cm-1. Furthermore, the superior ESP of the MLCC demonstrates excellent fatigue resistance and temperature stability, making it a promising solution for practical applications. Overall, this pivotal strategy offers a cost-effective solution for state-of-the-art MLCCs with ultra-low strain-vibration in pulse power systems.

15.
ACS Appl Mater Interfaces ; 15(1): 2313-2318, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534513

RESUMO

Domain walls (DWs) in ferroelectric materials are interfaces that separate domains with different polarizations. Charged domain walls (CDWs) and neutral domain walls are commonly classified depending on the charge state at the DWs. CDWs are particularly attractive as they are configurable elements, which can enhance field susceptibility and enable functionalities such as conductance control. However, it is difficult to achieve CDWs in practice. Here, we demonstrate that applying mechanical stress is a robust and reproducible approach to generate CDWs. By mechanical compression, CDWs with a head/tail-to-body configuration were introduced in ultrathin BaTiO3, which was revealed by in-situ transmission electron microscopy. Finite element analysis shows strong strain fluctuation in ultrathin BaTiO3 under compressive mechanical stress. Molecular dynamics simulations suggest that the strain fluctuation is a critical factor in forming CDWs. This study provides insight into ferroelectric DWs and opens a pathway to creating CDWs in ferroelectric materials.

16.
Int J Neurosci ; 122(6): 277-83, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22248033

RESUMO

We performed this systematic review to determine whether intravenous sodium valproate was more effective or safer than other drugs in patients with status epilepticus (SE). A literature search was performed using Medline, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL). From 544 articles screened, 5 were identified as randomized controlled trials and were included for data extraction. The main outcomes were SE controlled and risk of seizure continuation. The meta-analysis was performed with the Random-effect model. The quality of the included studies was evaluated by GRADE (Grading of Recommendations Assessment, Development, and Evaluation). There was no significant statistics in SE controlled between intravenous sodium valproate and phenytoin. Compared with diazepam, sodium valproate had a statistically significant lower risk of time interval for control of refractory SE (RSE) after having drugs; however, there was no statistically significant difference in SE controlled within 30 min between the two groups. There was no statistically significant difference in cessation from status between intravenous sodium valproate and levetiracetam. Intravenous sodium valprate was as effective as intravenous phenytoin for SE controlled and risk of seizure continuation.


Assuntos
Anticonvulsivantes/uso terapêutico , Estado Epiléptico/tratamento farmacológico , Ácido Valproico/uso terapêutico , Anticonvulsivantes/administração & dosagem , Diazepam/administração & dosagem , Diazepam/uso terapêutico , Humanos , Injeções Intravenosas , Levetiracetam , Fenitoína/administração & dosagem , Fenitoína/uso terapêutico , Piracetam/administração & dosagem , Piracetam/análogos & derivados , Piracetam/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Ácido Valproico/administração & dosagem
17.
ACS Appl Mater Interfaces ; 14(47): 53048-53056, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36384276

RESUMO

Although the solid-state cooling technology based on electrocaloric response has been considered a promising refrigeration solution for microdevices, the mediocre dipolar entropy change ΔS impedes its practical applications. In this work, ΔS of a conventional ferroelectric thin film, namely, 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 (BNBT), was greatly improved through engineering the nanodomain structures. The number of zero-field polar states and saturation polarization were greatly increased concomitant with a weakened strength of polar correlation in the thin films, owing to the local stabilization of strongly tetragonally distorted nanoclusters (tetragonality of ∼1.25) by modulating the growth conditions during the thin film deposition process. Consequently, a giant ΔS value of ∼ -48.5 J K-1 kg-1 (corresponding to ΔT = ∼27.3 K) and a wide window of operating temperature (>70 °C) were obtained near room temperature under a moderate electric field of 1330 kV cm-1. Moreover, our engineered BNBT thin film exhibits decent fatigue endurance; i.e., a substantial electrocaloric effect over a broad span of temperature can be sustained after 5 × 107 cyclic loading of the electric field. This work provides a universal design strategy for significantly improving the close-to-room-temperature electrocaloric performance of Bi-based ferroelectric thin films without the need of compositional or architectural complexity.

18.
Adv Sci (Weinh) ; 9(31): e2203926, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36117113

RESUMO

The current approach to achieving superior energy storage density in dielectrics is to increase their breakdown strength, which often incurs heat generation and unexpected insulation failures, greatly deteriorating the stability and lifetime of devices. Here, a strategy is proposed for enhancing recoverable energy storage density (Wr ) while maintaining a high energy storage efficiency (η) in glassy ferroelectrics by creating super tetragonal (super-T) nanostructures around morphotropic phase boundary (MPB) rather than exploiting the intensely strong electric fields. Accordingly, a giant Wr of ≈86 J cm-3 concomitant with a high η of ≈81% is acquired under a moderate electric field (1.7 MV cm-1 ) in thin films having MPB composition, namely, 0.94(Bi, Na)TiO3 -0.06BaTiO3 (BNBT), where the local super-T polar clusters (tetragonality ≈1.25) are stabilized by interphase strain. To the knowledge of the authors, the Wr of the engineered BNBT thin films represents a new record among all the oxide perovskites under a similar strength of electric field to date. The phase field simulation results ascertain that the improved Wr is attributed to the local strain heterogeneity and the large spontaneous polarization primarily is originated from the super-T polar clusters. The findings in this work present a genuine opportunity to develop ultrahigh-energy-density thin-film capacitors for low-electric-field-driven nano/microelectronics.

19.
ACS Nano ; 16(9): 15413-15424, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36070478

RESUMO

Perovskite multiferroics have drawn significant attention in the development of next-generation multifunctional electronic devices. However, the majority of existing multiferroics exhibit ferroelectric and ferromagnetic orderings only at low temperatures. Although interface engineering in complex oxide thin films has triggered many exotic room-temperature functionalities, the desired coupling of charge, spin, orbital and lattice degrees of freedom often imposes stringent requirements on deposition conditions, layer thickness and crystal orientation, greatly hindering their cost-effective large-scale applications. Herein, we report an interface-driven multiferroicity in low-cost and environmentally friendly bulk polycrystalline material, namely cubic BaTiO3-SrTiO3 nanocomposites which were fabricated through a simple, high-throughput solid-state reaction route. Interface reconstruction in the nanocomposites can be readily controlled by the processing conditions. Coexistence of room-temperature ferromagnetism and ferroelectricity, accompanying a robust magnetoelectric coupling in the nanocomposites, was confirmed both experimentally and theoretically. Our study explores the 'hidden treasure at the interface' by creating a playground in bulk perovskite oxides, enabling a broad range of applications that are challenging with thin films, such as low-power-consumption large-volume memory and magneto-optic spatial light modulator.

20.
Nat Commun ; 12(1): 2095, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828086

RESUMO

Failure of polarization reversal, i.e., ferroelectric degradation, induced by cyclic electric loadings in ferroelectric materials, has been a long-standing challenge that negatively impacts the application of ferroelectrics in devices where reliability is critical. It is generally believed that space charges or injected charges dominate the ferroelectric degradation. However, the physics behind the phenomenon remains unclear. Here, using in-situ biasing transmission electron microscopy, we discover change of charge distribution in thin ferroelectrics during cyclic electric loadings. Charge accumulation at domain walls is the main reason of the formation of c domains, which are less responsive to the applied electric field. The rapid growth of the frozen c domains leads to the ferroelectric degradation. This finding gives insights into the nature of ferroelectric degradation in nanodevices, and reveals the role of the injected charges in polarization reversal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA