Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Plant J ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39213173

RESUMO

Erianin, crepidatin, and chrysotobibenzyl are typical medicinal polymethoxylated bibenzyls (PMBs) that are commercially produced in Dendrobium species. PMBs' chemo-diversity is mediated by the manifold combinations of O-methylation and hydroxylation in a definite order, which remains unsolved. To unequivocally elucidate the methylation mechanism of PMBs, 15 possible intermediates in the biosynthetic pathway of PMBs were chemically synthesized. DcOMT1-5 were highly expressed in tissues where PMBs were biosynthesized, and their expression patterns were well-correlated with the accumulation profiles of PMBs. Moreover, cell-free orthogonal tests based on the synthesized intermediates further confirmed that DcOMT1-5 exhibited distinct substrate preferences and displayed hydroxyl-group regiospecificity during the sequential methylation process. The stepwise methylation of PMBs was discovered from SAM to dihydro-piceatannol (P) in the following order: P → 3-MeP → 4-OH-3-MeP → 4-OH-3,5-diMeP → 3,3'(4'),5-triMeP → 3,4,4',5-tetraMeP (erianin) or 3,3',4,5-tetraMeP (crepidatin) → 3,3',4,4',5-pentaMeP (chrysotobibenzyl). Furthermore, the regioselectivities of DcOMTs were investigated by ligand docking analyses which corresponded precisely with the catalytic activities. In summary, the findings shed light on the sequential catalytic mechanisms of PMB biosynthesis and provide a comprehensive PMB biosynthetic network in D. catenatum. The knowledge gained from this study may also contribute to the development of plant-based medicinal applications and the production of high-value PMBs.

2.
J Nat Prod ; 87(2): 228-237, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38266493

RESUMO

As a model liverwort, Marchantia polymorpha contains various flavone glucuronides with cardiovascular-promoting effects and anti-inflammatory properties. However, the related glucuronosyltransferases have not yet been reported. In this study, two bifunctional UDP-glucuronic acid/UDP-glucose:flavonoid glucuronosyltransferases/glucosyltransferases, MpUGT742A1 and MpUGT736B1, were identified from M. polymorpha. Extensive enzymatic assays found that MpUGT742A1 and MpUGT736B1 exhibited efficient glucuronidation activity for flavones, flavonols, and flavanones and showed promiscuous regioselectivity at positions 3, 6, 7, 3', and 4'. These enzymes catalyzed the production of a variety of flavonoid glucuronides with medicinal value, including apigenin-7-O-glucuronide and scutellarein-7-O-glucuronide. With the use of MpUGT736B1, apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide were prepared by scaled-up enzymatic catalysis and structurally identified by NMR spectroscopy. MpUGT742A1 also displayed glucosyltransferase activity on the 7-OH position of the flavanones using UDP-glucose as the sugar donor. Furthermore, we constructed four recombinant strains by combining the pathway for increasing the UDP-glucuronic acid supply with the two novel UGTs MpUGT742A1 and MpUGT736B1. When apigenin was used as a substrate, the extracellular apigenin-4'-O-glucuronide and apigenin-7,4'-di-O-glucuronide production obtained from the Escherichia coli strain BB2 reached 598 and 81 mg/L, respectively. Our study provides new candidate genes and strategies for the biosynthesis of flavonoid glucuronides.


Assuntos
Flavanonas , Marchantia , Flavonoides/química , Apigenina , Glucuronídeos/metabolismo , Marchantia/metabolismo , Glucuronosiltransferase/química , Glucuronosiltransferase/metabolismo , Escherichia coli/metabolismo , Glucose , Ácido Glucurônico , Difosfato de Uridina
3.
J Cell Physiol ; 238(10): 2499-2511, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642286

RESUMO

Family 1 UDP-glycosyltransferases (UGTs) are known to glycosylate multiple secondary plant metabolites and have been extensively studied. The increased availability of plant genome resources allows the identification of wide gene families, both functional and organizational. In this investigation, two MpUGT isoforms were cloned and functionally characterized from liverworts marchantia polymorpha and had high glycosylation activity against several flavonoids. MpUGT735A2 protein, in particular, tolerates a wide spectrum of substrates (flavonols, flavanones, flavones, stilbenes, bibenzyls, dihydrochalcone, phenylpropanoids, xanthones, and isoflavones). Overexpression of MpUGT735A2 and MpUGT743A1 in Arabidopsis thaliana enhances the accumulation of 3-O-glycosylated flavonol (kaempferol 3-O-glucoside-7-O-rhamnose), consistent with its in vitro enzymatic activity. Docking and mutagenesis techniques were applied to identify the structural and functional properties of MpUGT735A2 with promiscuous substrates. Mutation of Pro87 to Ser, or Gln88 to Val, substantially altered the regioselectivity for luteolin glycosylation, predominantly from the 3'-O- to the 7-O-position. The results were elucidated by focusing on the novel biocatalysts designed for producing therapeutic flavonoids. This investigation provides an approach to modulate MpUGT735A2 as a candidate gene for diverse glycosylation catalysis and a tool to design GTs with new substrate specificities for biomedical applications.

4.
New Phytol ; 237(2): 515-531, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36062450

RESUMO

Unlike bibenzyls derived from the vascular plants, lunularic acid (LA), a key precursor for macrocyclic bisbibenzyl synthesis in nonvascular liverworts, exhibits the absence of one hydroxy group within the A ring. It was hypothesized that both polyketide reductase (PKR) and stilbenecarboxylate synthase 1 (STCS1) were involved in the LA biosynthesis, but the underlined mechanisms have not been clarified. This study used bioinformatics analysis with molecular, biochemical and physiological approaches to characterize STCS1s and PKRs involved in the biosynthesis of LA. The results indicated that MpSTCS1s from Marchantia polymorpha catalyzed both C2→C7 aldol-type and C6→C1 Claisen-type cyclization using dihydro-p-coumaroyl-coenzyme A (CoA) and malonyl-CoA as substrates to yield a C6-C2-C6 skeleton of dihydro-resveratrol following decarboxylation and the C6-C3-C6 type of phloretin in vitro. The protein-protein interaction of PKRs with STCS1 (PPI-PS) was revealed and proved essential for LA accumulation when transiently co-expressed in Nicotiana benthamiana. Moreover, replacement of the active domain of STCS1 with an 18-amino-acid fragment from the chalcone synthase led to the PPI-PS greatly decreasing and diminishing the formation of LA. The replacement also increased the chalcone formation in STCS1s. Our results highlight a previously unrecognized PPI in planta that is indispensable for the formation of LA.


Assuntos
Marchantia , Salicilatos , Coenzima A/química
5.
Microb Cell Fact ; 21(1): 210, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36242071

RESUMO

BACKGROUND: Flavonoid C-glycosides have many beneficial effects and are widely used in food and medicine. However, plants contain a limited number of flavonoid C-glycosides, and it is challenging to create these substances chemically. RESULTS: To screen more robust C-glycosyltransferases (CGTs) for the biosynthesis of flavonoid C-glycosides, one CGT enzyme from Stenoloma chusanum (ScCGT1) was characterized. Biochemical analyses revealed that ScCGT1 showed the C-glycosylation activity for phloretin, 2-hydroxynaringenin, and 2-hydroxyeriodictyol. Structure modeling and mutagenesis experiments indicated that the glycosylation of ScCGT1 may be initiated by the synergistic action of conserved residue His26 and Asp14. The P164T mutation increased C-glycosylation activity by forming a hydrogen bond with the sugar donor. Furthermore, when using phloretin as a substrate, the extracellular nothofagin production obtained from the Escherichia coli strain ScCGT1-P164T reached 38 mg/L, which was 2.3-fold higher than that of the wild-type strain. Finally, it is proved that the coupling catalysis of CjFNS I/F2H and ScCGT1-P164T could convert naringenin into vitexin and isovitexin. CONCLUSION: This is the first time that C-glycosyltransferase has been characterized from fern species and provides a candidate gene and strategy for the efficient production of bioactive C-glycosides using enzyme catalysis and metabolic engineering.


Assuntos
Gleiquênias , Glicosiltransferases , Escherichia coli/metabolismo , Gleiquênias/metabolismo , Flavonoides/metabolismo , Glicosídeos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Floretina , Açúcares
6.
J Integr Plant Biol ; 64(10): 1935-1951, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35920566

RESUMO

The key enzymes involved in the flavonoid biosynthesis pathway have been extensively studied in seed plants, but relatively less in ferns. In this study, two 4-Coumarate: coenzyme A ligases (Sc4CL1 and Sc4CL2) and one novel chalcone synthase (ScCHS1) were functionally characterized by mining the Stenoloma chusanum transcriptome database. Recombinant Sc4CLs were able to esterify various hydroxycinnamic acids to corresponding acyl-coenzyme A (CoA). ScCHS1 could catalyze p-coumaroyl-CoA, cinnamoyl-CoA, caffeoyl-CoA, and feruloyl-CoA to form naringenin, pinocembrin, eriodictyol, and homoeriodictyol, respectively. Moreover, enzymatic kinetics studies revealed that the optimal substrates of ScCHS1 were feruloyl-CoA and caffeoyl-CoA, rather than p-coumaroyl-CoA, which was substantially different from the common CHSs. Crystallographic and site-directed mutagenesis experiments indicated that the amino acid residues, Leu87, Leu97, Met165, and Ile200, located in the substrate-binding pocket near the B-ring of products, could exert a significant impact on the unique catalytic activity of ScCHS1. Furthermore, overexpression of ScCHS1 in tt4 mutants could partially rescue the mutant phenotypes. Finally, ScCHS1 and Sc4CL1 were used to synthesize flavanones and flavones with multi-substituted hydroxyl and methoxyl B-ring in Escherichia coli, which can effectively eliminate the need for the cytochrome P450 hydroxylation/O-methyltransferase from simple phenylpropanoid acids. In summary, the identification of these important Stenoloma enzymes provides a springboard for the future production of various flavonoids in E. coli.


Assuntos
Gleiquênias , Flavanonas , Flavonas , Sequência de Aminoácidos , Gleiquênias/genética , Ácidos Cumáricos , Escherichia coli/genética , Escherichia coli/metabolismo , Flavanonas/metabolismo , Flavonoides/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Metiltransferases/metabolismo , Aminoácidos
7.
Plant Physiol ; 184(4): 1731-1743, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33023939

RESUMO

During the course of evolution of land plants, different classes of flavonoids, including flavonols and anthocyanins, sequentially emerged, facilitating adaptation to the harsh terrestrial environment. Flavanone 3ß-hydroxylase (F3H), an enzyme functioning in flavonol and anthocyanin biosynthesis and a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) family, catalyzes the hydroxylation of (2S)-flavanones to dihydroflavonols, but its origin and evolution remain elusive. Here, we demonstrate that functional flavone synthase Is (FNS Is) are widely distributed in the primitive land plants liverworts and evolutionarily connected to seed plant F3Hs. We identified and characterized a set of 2-ODD enzymes from several liverwort species and plants in various evolutionary clades of the plant kingdom. The bifunctional enzyme FNS I/F2H emerged in liverworts, and FNS I/F3H evolved in Physcomitrium (Physcomitrella) patens and Selaginella moellendorffii, suggesting that they represent the functional transition forms between canonical FNS Is and F3Hs. The functional transition from FNS Is to F3Hs provides a molecular basis for the chemical evolution of flavones to flavonols and anthocyanins, which contributes to the acquisition of a broader spectrum of flavonoids in seed plants and facilitates their adaptation to the terrestrial ecosystem.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Embriófitas/genética , Embriófitas/metabolismo , Flavonas/genética , Flavonas/metabolismo , Flavonóis/biossíntese , Flavonóis/genética , Evolução Química , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas
8.
BMC Neurol ; 21(1): 369, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560841

RESUMO

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) has been reported to treat muscle spasticity in post-stroke patients. The purpose of this study was to explore whether combined low-frequency rTMS (LF-rTMS) and cerebellar continuous theta burst stimulation (cTBS) could provide better relief than different modalities alone for muscle spasticity and limb dyskinesia in stroke patients. METHODS: This study recruited ninety stroke patients with hemiplegia, who were divided into LF-rTMS+cTBS group (n=30), LF-rTMS group (n=30) and cTBS group (three pulse bursts at 50 Hz, n=30). The LF-rTMS group received 1 Hz rTMS stimulation of the motor cortical (M1) region on the unaffected side of the brain, the cTBS group received cTBS stimulation to the cerebellar region, and the LF-rTMS+cTBS group received 2 stimuli as described above. Each group received 4 weeks of stimulation followed by rehabilitation. Muscle spasticity, motor function of limb and activity of daily living (ADL) were evaluated by modified Ashworth Scale (MAS), Fugl-Meyer Assessment (FMA) and Modified Barthel Index (MBI) scores, respectively. RESULTS: The MAS score was markedly decreased, FMA and MBI scores were markedly increased in the three groups after therapy than before therapy. In addition, after therapy, LF-rTMS+cTBS group showed lower MAS score, higher FMA and MBI scores than the LF-rTMS group and cTBS group. CONCLUSION: Muscle spasticity and limb dyskinesia of the three groups are all significantly improved after therapy. Combined LF-rTMS and cTBS treatment is more effective in improving muscle spasticity and limb dyskinesia of patients after stroke than LF-rTMS and cTBS treatment alone.


Assuntos
Discinesias , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Espasticidade Muscular/etiologia , Espasticidade Muscular/terapia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Estimulação Magnética Transcraniana , Resultado do Tratamento , Extremidade Superior
9.
J Exp Bot ; 71(1): 290-304, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31557291

RESUMO

The distribution of type I and II chalcone isomerases (CHIs) in plants is highly family specific. We have previously reported that ancient land plants, such as the liverworts and Selaginella moellendorffii, harbor type II CHIs. To better understand the function and evolution of CHI-fold proteins, transcriptomic data obtained from 52 pteridophyte species were subjected to sequence alignment and phylogenetic analysis. The residues determining type I/II CHI identity in the pteridophyte CHIs were identical to those of type I CHIs. The enzymatic characterization of a sample of 24 CHIs, representing all the key pteridophyte lineages, demonstrated that 19 of them were type I enzymes and that five exhibited some type II activity due to an amino acid mutation. Two pteridophyte chalcone synthases (CHSs) were also characterized, and a type IV CHI (CHIL) was demonstrated to interact physically with CHSs and CHI, and to increase CHS activity by decreasing derailment products, thus enhancing flavonoid production. These findings suggest that the emergence of type I CHIs may have coincided with the divergence of the pteridophytes. This study deepens our understanding of the molecular mechanism of CHIL as an enhancer in the flavonoid biosynthesis pathway.


Assuntos
Evolução Molecular , Gleiquênias/genética , Liases Intramoleculares/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Gleiquênias/enzimologia , Liases Intramoleculares/química , Liases Intramoleculares/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
10.
BMC Plant Biol ; 19(1): 497, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31726984

RESUMO

BACKGROUND: The basic helix-loop-helix (bHLH) transcription factors (TFs), as one of the largest families of TFs, play important roles in the regulation of many secondary metabolites including flavonoids. Their involvement in flavonoids synthesis is well established in vascular plants, but not as yet in the bryophytes. In liverworts, both bisbibenzyls and flavonoids are derived through the phenylpropanoids pathway and share several upstream enzymes. RESULTS: In this study, we cloned and characterized the function of PabHLH1, a bHLH family protein encoded by the liverworts species Plagiochasma appendiculatum. PabHLH1 is phylogenetically related to the IIIf subfamily bHLHs involved in flavonoids biosynthesis. A transient expression experiment showed that PabHLH1 is deposited in the nucleus and cytoplasm, while the yeast one hybrid assay showed that it has transactivational activity. When PabHLH1 was overexpressed in P. appendiculatum thallus, a positive correlation was established between the content of bibenzyls and flavonoids and the transcriptional abundance of corresponding genes involved in the biosynthesis pathway of these compounds. The heterologous expression of PabHLH1 in Arabidopsis thaliana resulted in the activation of flavonoids and anthocyanins synthesis, involving the up-regulation of structural genes acting both early and late in the flavonoids synthesis pathway. The transcription level of PabHLH1 in P. appendiculatum thallus responded positively to stress induced by either exposure to UV radiation or treatment with salicylic acid. CONCLUSION: PabHLH1 was involved in the regulation of the biosynthesis of flavonoids as well as bibenzyls in liverworts and stimulated the accumulation of the flavonols and anthocyanins in Arabidopsis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bibenzilas/metabolismo , Flavonoides/metabolismo , Hepatófitas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Hepatófitas/metabolismo , Proteínas de Plantas/genética
11.
Plant Cell Physiol ; 59(6): 1187-1199, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29528434

RESUMO

Liverworts, a section of the bryophyte plants which pioneered the colonization of terrestrial habitats, produce cyclic bisbibenzyls as secondary metabolites. These compounds are generated via the phenylpropanoid pathway, similar to flavonoid biosynthesis, for which basic helix-loop-helix (bHLH) transcription factors have been identified as one of the important regulators in higher plants. Here, a bHLH gene homolog (PabHLH) was isolated from the liverwort species Plagiochasma appendiculatum and its contribution to bisbibenzyl biosynthesis was explored. Variation in the abundance of PabHLH transcript mirrored that of tissue bisbibenzyl content in three different liverwort tissues. A phylogenetic analysis based on the bHLH domain sequence suggested that the gene encodes a member of bHLH subgroup IIIf, which clusters proteins involved in flavonoid synthesis. The gene's transient expression in onion epidermal cells implied that its product localized to the nucleus, and a transactivation assays in yeast showed that it was able to activate transcription. In both callus and thallus, the overexpression of PabHLH boosted bisbibenzyl accumulation, while also up-regulating PaPAL, Pa4CL1, PaSTCS1 and two genes encoding P450 cytochromes, and its RNA interference (RNAi)-induced suppression down-regulated the same set of genes and reduced the accumulation of bisbibenzyls. The abundance of PaCHS and PaFNSI transcript was related to flavonoid accumulation in transgenic thallus. PabHLH represents a candidate for the metabolic engineering of bisbibenzyl content.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bibenzilas/metabolismo , Regulação da Expressão Gênica de Plantas , Hepatófitas/genética , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Bibenzilas/química , Vias Biossintéticas , Genes Reporter , Hepatófitas/citologia , Hepatófitas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Ativação Transcricional
12.
New Phytol ; 217(2): 909-924, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083033

RESUMO

Flavonoids ubiquitously distribute to the terrestrial plants and chalcone isomerase (CHI)-catalyzed intramolecular and stereospecific cyclization of chalcones is a committed step in the production of flavonoids. However, so far the bona fide CHIs are found only in vascular plants, and their origin and evolution remains elusive. We conducted transcriptomic and/or genomic sequence search, subsequent phylogenetic analysis, and detailed biochemical and genetic characterization to explore the potential existence of CHI proteins in the basal bryophyte liverwort species and the lycophyte Selaginella moellendorffii. We found that both liverwort and Selaginella species possess canonical CHI-fold proteins that cluster with their corresponding higher plant counterparts. Among them, some members exhibited bona fide CHI activity, which catalyze stereospecific cyclization of both 6'-hydroxychalcone and 6'-deoxychalcone, yielding corresponding 5-hydroxy and 5-deoxyflavanones, resembling the typical type II CHIs currently known to be 'specific' for legume plants. Expressing those primitive bona fide CHIs in the Arabidopsis chi mutant restores the seed coat transparent testa phenotype and the accumulation of flavonoids. These findings, in contrast to our current understanding of the evolution of enzymatic CHIs, suggest that emergence of the bona fide type II CHIs is an ancient evolution event that occurred before the divergence of liverwort lineages.


Assuntos
Embriófitas/enzimologia , Evolução Molecular , Flavonoides/biossíntese , Liases Intramoleculares/metabolismo , Sequência de Aminoácidos , Biocatálise , Vias Biossintéticas , Ciclização , Ácidos Graxos/metabolismo , Flavonoides/química , Teste de Complementação Genética , Liases Intramoleculares/química , Liases Intramoleculares/genética , Cinética , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinação Genética/genética
13.
Molecules ; 23(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518887

RESUMO

Selaginella is an extant lycopodiophyte genus, which is representative of an ancient lineage of tracheophytes. The important evolutionary status makes it a valuable resource for the study of metabolic evolution in vascular plants. 4-coumarate: CoA ligase (4CL) is the pivotal enzyme that controls the flow of carbon through the phenylpropanoid metabolic pathway into the specific lignin, flavonoid, and wall-bound phenolics biosynthesis pathways. Although 4CLs have been extensively characterized in other vascular plants, little is known of their functions in Selaginella. Here, we isolated two 4CL genes (Sm4CL1 and Sm4CL2) from Selaginella moellendorffii. Based on the enzymatic activities of the recombinant proteins, both of these genes encoded bona fide 4CLs. The 4CL isoforms in S. moellendorffii have different activities: Sm4CL2 was more active than Sm4CL1. The enzymatic properties and gene expression patterns indicated that the 4CL genes have been conserved in the evolution of vascular plants.


Assuntos
Clonagem Molecular , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Expressão Gênica , Selaginellaceae/genética , Selaginellaceae/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Coenzima A Ligases/química , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Propanóis/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selaginellaceae/classificação , Análise de Sequência de DNA
14.
Molecules ; 23(7)2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973530

RESUMO

Alkenal double bond reductases (DBRs), capable of catalyzing the NADPH-dependent reduction of the α,ß-unsaturated double bond, play key roles in the detoxication of alkenal carbonyls. Here, the isolation and characterization of two DBRs encoded by the liverwort species Marchantia paleacea are described. The two DBRs share a relatively low similarity, and phylogenetic analysis indicated that MpMDBRL is more closely related to microbial DBRs than to other plant DBRs, while MpDBR shares common ancestry with typical plant DBRs. Both DBR proteins exhibited hydrogenation ability towards hydroxycinnamyl aldehydes; however, their temperature optimums were strikingly different. MpMDBRL demonstrated slightly weaker catalytic efficiency compared to MpDBR, and the structural models of their active binding sites to the substrate may provide a parsimonious explanation. Furthermore, both DBRs significantly responded to phytohormone treatment. In conclusion, M. paleacea produces two distinct types of functional DBRs, both of which participate in the protection against environmental stress in liverwort. The presence of a microbial type of DBR in a plant is herein reported for the first time.


Assuntos
Marchantia/enzimologia , Oxirredutases/genética , Oxirredutases/metabolismo , Domínio Catalítico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hidrogenação , Marchantia/química , Marchantia/genética , Modelos Moleculares , Oxirredutases/química , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Molecules ; 22(5)2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-28481281

RESUMO

Apigenin, a widely distributed flavone, exhibits excellent antioxidant, anti-inflammatory, and antitumor properties. In addition, the methylation of apigenin is generally considered to result in better absorption and greatly increased bioavailability. Here, four putative Class II methyltransferase genes were identified from the transcriptome sequences generated from the liverwort species Plagiochasma appendiculatum. Each was heterologously expressed as a His-fusion protein in Escherichia coli and their methylation activity against apigenin was tested. One of the four Class II OMT enzymes named 4'-O-methyltransferase (Pa4'OMT) was shown to react effectively with apigenin, catalyzing its conversion to acacetin. Besides the favorite substrate apigenin, the recombinant PaF4'OMT was shown to catalyze luteolin, naringenin, kaempferol, quercetin, genistein, scutellarein, and genkwanin to the corresponding 4'-methylation products. In vivo feeding experiments indicated that PaF4'OMT could convert apigenin to acacetin efficiently in E. coli and approximately 88.8 µM (25.2 mg/L) of product was synthesized when 100 µM of apigenin was supplemented. This is the first time that a Class II plant O-methyltransferase has been characterized in liverworts.


Assuntos
Hepatófitas , Metiltransferases , Proteínas de Plantas , Hepatófitas/enzimologia , Hepatófitas/genética , Metiltransferases/biossíntese , Metiltransferases/química , Metiltransferases/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/química , Proteínas de Plantas/genética , Especificidade por Substrato/fisiologia
16.
Molecules ; 22(11)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29088080

RESUMO

The aerial organs of most terrestrial plants are covered by a hydrophobic protective cuticle. The main constituent of the cuticle is the lipid polyester cutin, which is composed of aliphatic and aromatic domains. The aliphatic component is a polyester between fatty acid/alcohol and hydroxycinnamoyl acid. The BAHD/HxxxD family enzymes are central to the synthesis of these polyesters. The nature of this class of enzymes in bryophytes has not been explored to date. Here, a gene encoding a fatty ω-hydroxyacid/fatty alcohol hydroxycinnamoyl transferase (HFT) has been isolated from the liverwort Marchantia emarginata and has been functionally characterized. Experiments based on recombinant protein showed that the enzyme uses ω-hydroxy fatty acids or primary alcohols as its acyl acceptor and various hydroxycinnamoyl-CoAs-preferentially feruloyl-CoA and caffeoyl-CoA-as acyl donors at least in vitro. The transient expression of a MeHFT-GFP fusion transgene in the Nicotiana benthamiana leaf demonstrated that MeHFT is directed to the cytoplasm, suggesting that the feruloylation of cutin monomers takes place there.


Assuntos
Aciltransferases/metabolismo , Marchantia/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Acil Coenzima A/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Marchantia/genética , Filogenia , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura , Nicotiana/genética
17.
Biochem Biophys Res Commun ; 481(3-4): 239-244, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27815071

RESUMO

Some commercially important vinyl derivatives are produced by the decarboxylation of phenolic acids. Enzymatically, this process can be achieved by phenolic acid decarboxylases (PADs), which are able to act on phenolic acid substrates such as ferulic and p-coumaric acid. Although many microbial PADs have been characterized, little is known regarding their plant homologs. Transcriptome sequencing in the liverworts has identified seven putative PADs, which share a measure of sequence identity with microbial PADs, but are typically much longer proteins. Here, a PAD-encoding gene was isolated from the liverwort species Conocephalum japonicum. The 1197 nt CjPAD cDNA sequence was predicted to be translated into a 398 residue protein. When the gene was heterologously expressed in Escherichia coli, its product exhibited a high level of PAD activity when provided with either p-coumaric or ferulic acid as substrate, along with the conversion of caffeic acid and sinapic acid to their corresponding decarboxylated products. Both N- and C-terminal truncation derivatives were non-functional. The transient expression in tobacco of a GFP/CjPAD fusion gene demonstrated that the CjPAD protein is expressed in the cytoplasm. It is first time a PAD was characterized from plants and the present investigation provided a candidate gene for catalyzing the formation of volatile phenols.


Assuntos
Carboxiliases/genética , Carboxiliases/metabolismo , Hepatófitas/enzimologia , Sequência de Aminoácidos , Biocatálise , Carboxiliases/química , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Proteínas de Fluorescência Verde/metabolismo , Epiderme Vegetal/citologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína , Frações Subcelulares/metabolismo , Especificidade por Substrato , Nicotiana/citologia
18.
Plant Cell Rep ; 34(2): 233-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25404490

RESUMO

KEY MESSAGE: A chalcone synthase gene ( PaCHS ) was isolated and functionally characterized from liverwort. The ectopic expression of PaCHS in Marchantia paleacea callus raised the flavonoids content. Chalcone synthase (CHS; EC 2.3.1.74) is pivotal for the biosynthesis of flavonoid and anthocyanin pigments in plants. It produces naringenin chalcone by condensing one p-coumaroyl- and three malonyl-coenzyme A thioesters through a polyketide intermediate that is cyclized by intramolecular Claisen condensation. Although CHSs of higher plants have been extensively studied, enzyme properties of the CHSs in liverworts have been scarcely characterized. In this study, we report the cloning and characterization of CHS (designated as PaCHS) from the liverwort Plagiochasma appendiculatum. The gene product was 60-70 % identical with chalcone synthases from other species, and contained the characteristic conserved Cys-His-Asn catalytic triad. The recombinant PaCHS was able to catalyze p-coumaroyl-CoA and malonyl-CoA to generate naringenin in vitro. Heterologously expressed PaCHS protein showed similar kinetic properties to those of higher plant CHS. The ectopic expression of PaCHS in Marchantia paleacea callus raised the content of the total flavonoids. These results suggested that PaCHS played a key role in the flavonoids biosynthesis in liverworts. Furthermore, when the thallus of P. appendiculatum was treated with abiotic stress inducers methyl jasmonate, salicylic acid and abscisic acid, PaCHS expression was enhanced. This is the first time that a CHS in liverworts has been functionally characterized.


Assuntos
Aciltransferases/metabolismo , Flavonoides/metabolismo , Hepatófitas/enzimologia , Modelos Moleculares , Reguladores de Crescimento de Plantas/farmacologia , Ácido Abscísico/farmacologia , Acetatos/farmacologia , Aciltransferases/genética , Sequência de Aminoácidos , Antocianinas/metabolismo , Vias Biossintéticas , Chalconas/química , Chalconas/metabolismo , Ciclopentanos/farmacologia , Flavanonas/química , Flavanonas/metabolismo , Flavonoides/química , Expressão Gênica , Hepatófitas/efeitos dos fármacos , Hepatófitas/genética , Marchantia/genética , Marchantia/metabolismo , Dados de Sequência Molecular , Oxilipinas/farmacologia , Filogenia , Proteínas Recombinantes , Ácido Salicílico/farmacologia , Alinhamento de Sequência , Análise de Sequência de DNA , Transgenes
19.
Plant Cell Rep ; 33(4): 633-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24384822

RESUMO

KEY MESSAGE: Fertile hybrids were produced with genetic material transferred from Th. intermedium into a wheat background and supply a source of genetic variation to wheat improvement. Both symmetric and asymmetric somatic hybrids have been obtained from the combination of wheatgrass (Thinopyrum intermedium) and bread wheat (Triticum aestivum). Two wheat protoplast populations, one derived from embryogenic calli and the other from a non-regenerable, rapidly dividing cell line, were fused with Th. intermedium protoplasts which had been (or not been) pre-irradiated with UV. Among the 124 regenerated calli, 64 could be categorized as being of hybrid origin on the basis of plant morphology, peroxidase isozyme, RAPD DNA profiling and karyological analysis. Numerous green plantlets were regenerated from 13 calli recovered from either the symmetric hybrid (no UV pre-treatment) or the asymmetric one (30 s UV irradiation). One of these hybrid plants proved to be vigorous and self-fertile. The regenerants were all closer in phenotype to wheat than to Th. intermedium. Genomic in situ hybridization analysis showed that the chromosomes in the hybrids were largely intact wheat ones, although a few Th. intermedium chromosome fragments had been incorporated within them.


Assuntos
Hibridização Genética , Endogamia/métodos , Poaceae/genética , Triticum/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Fertilidade/genética , Genoma de Planta , Genótipo , Hibridização In Situ , Cariotipagem , Peroxidases/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Regeneração
20.
Int J Mol Sci ; 15(1): 1080-95, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24434621

RESUMO

Flavonoids are secondary metabolites derived from phenylalanine and acetate metabolism. They fulfil a variety of functions in plants and have health benefits for humans. During the synthesis of the tricyclic flavonoid natural products in plants, oxidative modifications to the central C ring are catalyzed by four of FeII and 2-oxoglutarate dependent (2-ODD) oxygenases, namely flavone synthase I (FNS I), flavonol synthase (FLS), anthocyanidin synthase (ANS) and flavanone 3ß-hydroxylase (FHT). FNS I, FLS and ANS are involved in desaturation of C2-C3 of flavonoids and FHT in hydroxylation of C3. FNS I, which is restricted to the Apiaceae species and in rice, is predicted to have evolved from FHT by duplication. Due to their sequence similarity and substrate specificity, FLS and ANS, which interact with the α surface of the substrate, belong to a group of dioxygenases having a broad substrate specificity, while FNS I and FHT are more selective, and interact with the naringenin ß surface. Here, we summarize recent findings regarding the function of the four 2-ODD oxygenases and the relationship between their catalytic activity, their polypeptide sequence and their tertiary structure.


Assuntos
Flavonoides/biossíntese , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Sequência de Aminoácidos , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Proteínas de Plantas/química , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA