Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nanotechnology ; 35(36)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38744249

RESUMO

Long term stability, high responsivity, and fast response speed are essential for the commercialization of graphene photodetectors (GPDs). In this work, a parylene/graphene UV photodetector with long term stability, ultrahigh responsivity and fast response speed, is demonstrated. Parylene as a stable physical and chemical insulating layer reduces the environmental sensitivity of graphene, and enhances the performances of GPDs. In addition, utilizing bilayer electrodes reduces the buckling and damage of graphene after transferring. The parylene/graphene UV photodetector exhibits an ultrahigh responsivity of 5.82 × 105AW-1under 325 nm light irradiation at 1 V bias. Additionally, it shows a fast response speed with a rise time of 80µs and a fall time of 17µs, and a long term stability at 405 nm wavelength which is absent in the device without parylene. The parylene/graphene UV photodetector possesses superior performances. This paves the way for the commercial application of the high-performance graphene hybrid photodetectors, and provides a practical method for maintaining the long term stability of two dimensional (2D) materials.

2.
Nano Lett ; 23(8): 3107-3115, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37042482

RESUMO

Two-terminal self-rectifying (SR)-synaptic memristors are preeminent candidates for high-density and efficient neuromorphic computing, especially for future three-dimensional integrated systems, which can self-suppress the sneak path current in crossbar arrays. However, SR-synaptic memristors face the critical challenges of nonlinear weight potentiation and steep depression, hindering their application in conventional artificial neural networks (ANNs). Here, a SR-synaptic memristor (Pt/NiOx/WO3-x:Ti/W) and cross-point array with sneak path current suppression features and ultrahigh-weight potentiation linearity up to 0.9997 are introduced. The image contrast enhancement and background filtering are demonstrated on the basis of the device array. Moreover, an unsupervised self-organizing map (SOM) neural network is first developed for orientation recognition with high recognition accuracy (0.98) and training efficiency and high resilience toward both noises and steep synaptic depression. These results solve the challenges of SR memristors in the conventional ANN, extending the possibilities of large-scale oxide SR-synaptic arrays for high-density, efficient, and accurate neuromorphic computing.

3.
Langmuir ; 39(45): 15911-15919, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906701

RESUMO

Flexible sensors are capable of converting multiple human physiological signals into electrical signals for various applications in clinical diagnostics, athletics, and human-machine interaction. High-performance flexible strain sensors are particularly desirable for sensitive, reliable, and long-term monitoring, but current applications are still constrained due to high response threshold, low recoverability properties, and complex preparation methods. In this study, we present a stable and flexible strain sensor by a cost-effective self-assemble approach that demonstrates remarkable sensitivity (2169), ultrafast response and recovery time (112 ms), and wide dynamic response range (0-50%), as confirmed in human pulse and human-computer interaction. These excellent performances can be attributed to the design of a Polydimethylsiloxane (PDMS) substrate integrated with multiwalled carbon nanotubes (MWCNT) and graphene nanosheets (GNFs), which results in high electrical conductivity. The MWCNT serves as a bridge, connecting the GNFs to create an efficient conductive path even under a strain of 50%. We also demonstrate the strain sensor's capability in weak physiological signal pulse measurement and excellent resistance to mechanical fatigue. Moreover, the sensor shows diverse sensitivities in various tensile states with different signal patterns, making it highly suitable for full-range human monitoring and flexible wearable systems.


Assuntos
Grafite , Nanotubos de Carbono , Dispositivos Eletrônicos Vestíveis , Humanos , Condutividade Elétrica , Grafite/química , Atenção à Saúde
4.
Langmuir ; 38(1): 504-513, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34965120

RESUMO

Optical biosensors support disease diagnostic applications, offering high accuracy and sensitivity due to label-free detection and their optical resonance enhancement. However, optical biosensors based on noble metal nanoparticles and precise micro-electromechanical system technology are costly, which is an obstacle for their applications. Here, we proposed a biosensor reuse method with nanoscale parylene C film, taking the silicon-on-insulator microring resonator biosensor as an example. Parylene C can efficiently adsorb antibody by one-step modification without any surface treatment, which simplifies the antibody modification process of sensors. Parylene C (20 nm thick) was successfully coated on the surface of the microring to modify anti-carcinoembryonic antigen (anti-CEA) and specifically detect CEA. After sensing, parylene C was successfully removed without damaging the sensing surface for the sensor reusing. The experimental results demonstrate that the sensing response did not change significantly after the sensor was reused more than five times, which verifies the repeatability and reliability of the reusable method by using parylene C. This framework can potentially reduce the cost of biosensors and promote their further applications.


Assuntos
Técnicas Biossensoriais , Silício , Polímeros , Regeneração , Reprodutibilidade dos Testes , Xilenos
5.
Nanotechnology ; 33(8)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34787105

RESUMO

Photodetectors (PDs) are the core component of multiple commercial optical sensing systems. Currently, the detection of ultra-weak ultraviolet (UV) optical signals is becoming increasingly important for wide range of applications in civil and military industries. Due to its wide band gap, low cost, and long-term stability, titanium dioxide (TiO2) is an attractive material for UV photodetection. A kind of low-cost TiO2nanomaterial (named as P25) manufactured by flame hydrolysis is an easily available commercial material. However, a low-cost and high-sensitivity UV PD based on P25 has not been achieved until now. Here, a hybrid UV PD with monolayer CVD graphene covered by a thin film of P25 quantum dots was prepared for the first time, and its responsivity was approximately 105A W-1at 365 nm wavelength. The response time and recovery time of the UV PD were 32.6 s and 34 s, respectively. Strong light absorption and photocontrolled oxygen adsorption of the P25 layer resulted in high UV sensitivity. The UV PDs proposed in this work have great potential for commercialization due to their low cost and high sensitivity.

6.
Nanotechnology ; 31(25): 255503, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045901

RESUMO

Plasmonic nanostructure-based refractive index (RI) sensors are the core component of biosensor systems and play an increasingly important role in the diagnosis of human disease. However, the costs of traditional plasmonic RI sensors are not acceptable to everyone due to their expensive fabrication process. Here, a novel low-cost and high-performance visible-light RI sensor with a particle-on-film configuration was experimentally demonstrated. The sensor was fabricated by transferring annealed Au nanoparticles (NPs) onto a thin gold film with polymethyl methacrylate (PMMA) as a support. RI sensitivities of approximately 209 nm/RIU and 369 nm/RIU were achieved by reflection and transmission spectrum measurements, respectively. The high sensitivity is due to the strong plasmon-mediated energy confinement within the interface between the particles and the film. The possibility of wafer-scale production and high working stability achieved by the transfer process, together with the high sensitivity to the environmental RI, provides an extensive impact on the realization of universal biosensors for biological applications.

7.
Phys Chem Chem Phys ; 21(42): 23758-23763, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31638637

RESUMO

Tungsten-based memristors possess many advantages as candidates for memristive devices, including gradual changes in resistance states and memorization and learning functions. However, most previous reports mainly focus on studying synaptic learning rules instead of analysing the internal mechanism that results in the exterior learning rules. Herein, we discuss stacked Au/WTiOx/Au and Ti/WTiOx/Au devices in which the function of the resistance switch is realized by the externally induced local migration of oxygen ions. The consecutively adjustable multilevel resistance of the Au/WTiOx/Au device may be due to the variation in the barrier width and height in high oxygen vacancy concentrations. Additionally, the high and low resistance states of Ti/WTiOx/Au devices are considered as a result of the connection and rupture of the conductive filaments at low concentrations of oxygen vacancies. The physical mechanism construction and state-full synapse development through the control of ion migration provide insight into the applications of oxide-based memristors in neuromorphic computation.

8.
Sensors (Basel) ; 17(9)2017 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-28891928

RESUMO

Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15-200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs).

9.
Anal Chim Acta ; 1287: 342068, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182375

RESUMO

Wearable biosensors have gained huge interest due to their potential for real-time physiological information. The development of a non-invasive blood glucose device is of great interests for health monitoring in reducing the diabetes incidence. Here, we report a sandwich-structured biosensor that is designed for glucose levels detection by using sweat as the means of monitoring. The Prussian blue nanoparticles (PBNPs) and carboxylated carbon nanotubes (MWCNT-COOH) were self-assembled on the electrode to improve the electrochemical performance and as the sensor unit, glucose oxidase (GOx) was immobilized by chitosan (CS) as the reaction catalysis unit, and finally encapsulated with Nafion to ensure a stable performance. As a result, the GOx/PBNPs/MWCNT-COOH sensor displays a low detection limit (7.0 µM), high sensitivity (11.87 µA mM-1 cm-2), and excellent interference resistance for a full sweat glucose application range (0.0-1.0 mM) for both healthy individuals and diabetic patients. Additionally, the glucose sensor exhibits stable stability for two weeks and can be successfully applied to screen-printed carbon electrodes (SPCE), demonstrating its great potential for personalized medical detection and chronic disease management.


Assuntos
Glicemia , Nanotubos de Carbono , Humanos , Automonitorização da Glicemia , Glucose Oxidase , Glucose
10.
Opt Express ; 21(12): 14202-14, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787610

RESUMO

We proposed and demonstrated a novel optical modulator based on a bidirectional grating coupler designed for perfectly vertical fiber coupling. The grating functions as the fiber coupler and 3-dB splitter. To observe the interference, an arm difference of 30µm is introduced. As a result of the high coupling efficiency and near perfect split ratio of the grating coupler, this device exhibits a low on-chip insertion loss of 5.4dB (coupling loss included) and high on-off extinction ratio more than 20dB. The modulation efficiency is estimated to be within 3-3.84V•cm. In order to investigate the fiber misalignment tolerance of this modulator, misalignment influence of the static characteristics is analyzed. 10Gb/s Data transmission experiments of this device are performed with different fiber launch positions. The energy efficiency is estimated to be 8.1pJ/bit.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Refratometria/instrumentação , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
11.
Nanomaterials (Basel) ; 13(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37446512

RESUMO

A high-efficiency photodetector consisting of colloidal PbS quantum dots (QDs) and single-layer graphene was prepared in this research. In the early stage, PbS QDs were synthesized and characterized, and the results showed that the product conformed with the characteristics of high-quality PbS QDs. Afterwards, the photodetector was derived through steps, including the photolithography and etching of indium tin oxide (ITO) electrodes and the graphene active region, as well as the spin coating and ligand substitution of the PbS QDs. After application testing, the photodetector, which was prepared in this research, exhibited outstanding properties. Under visible and near-infrared light, the highest responsivities were up to 202 A/W and 183 mA/W, respectively, and the highest detectivities were up to 2.24 × 1011 Jones and 2.47 × 108 Jones, respectively, with light densities of 0.56 mW/cm2 and 1.22 W/cm2, respectively. In addition to these results, the response of the device and the rise and fall times for the on/off illumination cycles showed its superior performance, and the fastest response times were approximately 0.03 s and 1.0 s for the rise and fall times, respectively. All the results illustrated that the photodetector based on PbS and graphene, which was prepared in this research, possesses the potential to be applied in reality.

12.
Artigo em Inglês | MEDLINE | ID: mdl-36752383

RESUMO

Artificial synapses with the capability of optical sensing and synaptic functions are fundamental components to construct neuromorphic visual systems. However, most reported artificial optical synapses require a combination of optical and electrical stimuli to achieve bidirectional synaptic conductance modulation, leading to an increase in the processing time and system complexity. Here, an all-optically controlled artificial synapse based on the graphene/titanium dioxide (TiO2) quantum dot heterostructure is reported, whose conductance could be reversibly tuned by the effects of light-induced oxygen adsorption and desorption. Synaptic behaviors, such as excitatory and inhibitory, short-term and long-term plasticity, and learning-forgetting processes, are implemented using the device. An artificial neural network simulator based on the artificial synapse was used to train and recognize handwritten digits with a recognition rate of 92.2%. Furthermore, a 5 × 5 optical synaptic array that could simultaneously sense and memorize light stimuli was fabricated, mimicking the sensing and memory functionality of the retina. Such an all-optically controlled artificial synapse shows a promising prospect in the application of perception, learning, and memory tasks for future neuromorphic visual systems.

13.
J Phys Chem Lett ; 12(14): 3600-3606, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33822633

RESUMO

Artificial synapses based on biological synapses represent a new idea in the field of artificial intelligence with future applications. Current two-terminal RRAM devices have developed tremendously due to the adjustable synaptic plasticity of artificial synapses. However, these devices still have some problems, such as current leakage and poor durability. Here, we demonstrate a Pt/NiOx/WO3-x:Ti/W memristor with a pn-type heterojunction and two metal-semiconductor contacts, which exhibits good rectification. Due to the change in the internal potential barrier, the devices possess multiconductance states under different pulse modulations and memory characteristics, similar to synapses. The rectification characteristics of the device exhibit stable enhancement and suppression behavior. Each device in the 10 × 10 cross array we constructed can be written correctly, which verifies that leakage current does not appear in the device. The structure proposed in this work has great significance for the integration of large-scale memristor cross arrays.


Assuntos
Níquel/química , Óxidos/química , Platina/química , Titânio/química , Tungstênio/química , Semicondutores
14.
Micromachines (Basel) ; 11(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957465

RESUMO

We propose a broadband high-efficiency grating coupler for perfectly vertical fiber-to-chip coupling. The up-reflection is reduced, hence enhanced coupling efficiency is achieved with the help of a Fabry-Perot-like cavity composed of a silicon nitride reflector and the grating itself. With the theory of the Fabry-Perot cavity, the dimensional parameters of the coupler are investigated. With the optimized parameters, up-reflection in the C-band is reduced from 10.6% to 5%, resulting in an enhanced coupling efficiency of 80.3%, with a 1-dB bandwidth of 58 nm, which covers the entire C-band. The minimum feature size of the proposed structure is over 219 nm, which makes our design easy to fabricate through 248 nm deep-UV lithography, and lowers the fabrication cost. The proposed design has potential in efficient and fabrication-tolerant interfacing applications, between off-chip light sources and integrated chips that can be mass-produced.

15.
Materials (Basel) ; 13(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545474

RESUMO

In this work, a bidirectional grating coupler for perfectly vertical coupling is proposed. The coupling efficiency is enhanced using a silicon nitride (Si3N4) layer above a uniform grating. In the presence of Si3N4 layer, the back-reflected optical power into the fiber is diminished and coupling into the waveguide is increased. Genetic algorithm (GA) is used to optimize the grating and Si3N4 layer simultaneously. The optimal design obtained from GA shows that the average in-plane coupling efficiency is enhanced from about 57.5% (-2.5 dB) to 68.5% (-1.65 dB), meanwhile the average back-reflection in the C band is reduced from 17.6% (-7.5 dB) to 7.4% (-11.3 dB). With the help of a backside metal mirror, the average coupling efficiency and peak coupling efficiency are further increased to 87% (-0.6 dB) and 89.4% (-0.49 dB). The minimum feature size of the designed device is 266 nm, which makes our design easy to fabricate through 193 nm deep-UV lithography and lowers the fabrication cost. In addition, the coupler proposed here shows a wide-band character with a 1-dB bandwidth of 64 nm and 3-dB bandwidth of 96 nm. Such a grating coupler design can provide an efficient and cost-effective solution for vertical fiber-to-chip optical coupling of a Wavelength Division Multiplexing (WDM) application.

16.
ACS Nano ; 14(5): 5806-5817, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32293867

RESUMO

Organic-inorganic hybrid halide perovskites (ABX3), especially layered 2D perovskites, have been recognized as promising semiconductors due to their tunable crystal structure and unique optoelectronic properties. A-site cations, as spacers, allow various metal halide assemblies, but the stacking pattern and the influence of their collective behavior on the properties of the resultant materials remain ambiguous. Here, the cation-stacking effects in the 2D perovskite single crystals, with a focus on the electron-phonon interaction, are investigated. We reveal the different photoluminescence from the surface region and the interior of the crystal, which is due to the residual strain induced by A-site cation stacking. We also examine the cation-stacking effects on the electron-phonon interaction, which is further employed to tailor the optoelectronic properties of the resultant 2D crystals. By reducing the microstrain, we reduce the electron-phonon coupling to improve the mobility and their stability against electric field in the corresponding crystals. Our study suggests a way to manipulate the optoelectronic properties in 2D perovskite materials by rational design of cation stacking.

17.
Micromachines (Basel) ; 10(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121911

RESUMO

A 4 × 25 Gb/s ultrawide misalignment tolerance wavelength-division-multiplex (WDM) transmitter based on novel bidirectional vertical grating coupler has been demonstrated on complementary metal-oxide-semiconductor (CMOS)-compatible silicon-on-insulator (SOI) platform. Simulations indicate the bidirectional grating coupler (BGC) is widely misalignment tolerant, with an excess coupling loss of only 0.55 dB within ±3 µm fiber misalignment range. Measurement shows the excess coupling loss of the BGC is only 0.7 dB within a ±2 µm fiber misalignment range. The bidirectional grating structure not only functions as an optical coupler, but also acts as a beam splitter. By using the bidirectional grating coupler, the silicon optical modulator shows low insertion loss and large misalignment tolerance. The eye diagrams of the modulator at 25 Gb/s don't show any obvious deterioration within the waveguide-direction fiber misalignment ranger of ±2 µm, and still open clearly when the misalignment offset is as large as ±4 µm.

18.
Nanomaterials (Basel) ; 9(11)2019 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-31744237

RESUMO

Carbon solid solubility in metals is an important factor affecting uniform graphene growth by chemical vapor deposition (CVD) at high temperatures. At low temperatures, however, it was found that the carbon diffusion rate (CDR) on the metal catalyst surface has a greater impact on the number and uniformity of graphene layers compared with that of the carbon solid solubility. The CDR decreases rapidly with decreasing temperatures, resulting in inhomogeneous and multilayer graphene. In the present work, a Ni-Cu alloy sacrificial layer was used as the catalyst based on the following properties. Cu was selected to increase the CDR, while Ni was used to provide high catalytic activity. By plasma-enhanced CVD, graphene was grown on the surface of Ni-Cu alloy under low pressure using methane as the carbon source. The optimal composition of the Ni-Cu alloy, 1:2, was selected through experiments. In addition, the plasma power was optimized to improve the graphene quality. On the basis of the parameter optimization, together with our previously-reported, in-situ, sacrificial metal-layer etching technique, relatively homogeneous wafer-size patterned graphene was obtained directly on a 2-inch SiO2/Si substrate at a low temperature (~600 °C).

19.
ACS Appl Mater Interfaces ; 11(15): 14427-14436, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30907579

RESUMO

A metal-catalyst-free method for the direct growth of patterned graphene on an insulating substrate is reported in this paper. Parylene N is used as the carbon source. The surface molecule layer of parylene N is cross-linked by argon plasma bombardment. Under high-temperature annealing, the cross-linking layer of parylene N is graphitized into nanocrystalline graphene, which is a process that transforms organic to inorganic and insulation to conduction, while the parylene N molecules below the cross-linking layer decompose and vaporize at high temperature. Using this technique, the direct growth of a graphene film in a large area and with good uniformity is achieved. The thickness of the graphene is determined by the thickness of the cross-linking layer. Patterned graphene films can be obtained directly by controlling the patterns of the cross-linking region (lithography-free patterning). Graphene-silicon Schottky junction photodetectors are fabricated using the as-grown graphene. The Schottky junction shows good performance. The application of direct-grown graphene in optoelectronics is achieved with a great improvement of the device fabrication efficiency compared with transferred graphene. When illuminated with a 792 nm laser, the responsivity and specific detectivity of the detector measured at room temperature are 275.9 mA/W and 4.93 × 109 cm Hz1/2/W, respectively.

20.
Nanoscale ; 9(12): 4082-4089, 2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28111680

RESUMO

Frequency conversion with nonlinear electronic components, a common approach for signal processing required in various communication applications, has found its operation bandwidth bottleneck due to the limited carrier mobility of the traditional materials. Meanwhile, fiber-optics communications are playing a significant role in communication services due to their excellent signal transmission properties. However, the transmitted optical signals had to be converted to electrical signals with photodetectors before frequency conversion was performed through conventional electronic devices, which make this conversion system very complex and costly. Hence, to develop a compact device that can achieve the photodetection and frequency conversion functions simultaneously is critical and significative. Here, we have proposed a novel concept for frequency conversion and demonstrated a nonlinear graphene photodetector based frequency converter that performs frequency conversion from optical signals directly. With this new concept, a frequency doubling signal at 4 GHz was obtained from a 2 GHz intensity-modulated optical signal. Moreover, using a 10 MHz intensity-modulated optical signal and another 3 GHz intensity-modulated optical signal, we show the frequency up-conversion to 3 ± 0.01 GHz. In particular, the frequency down-conversion to 100 MHz was achieved successfully by using a 2 GHz intensity-modulated optical signal and another 2.1 GHz intensity-modulated optical signal. Considering the broadband optical absorption, strong saturable absorption, high carrier mobility, and short photogenerated carrier lifetime of the graphene material, graphene photodetectors have the potential to achieve the frequency conversion of millimeter-wave band, which will open promising prospects in the domain of microwave photonics for next-gen communication systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA