Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Eye Res ; 245: 109956, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38849003

RESUMO

Exposure to particulate matters in air pollution of 2.5 µm or less (PM2.5) was associated with loss of meibomian glands. The aim of this study was to verify that PM2.5 could directly impact meibomian gland epithelial cells and damage their function. To investigate the impact of PM2.5 on meibomian gland, immortalized human meibomian gland epithelial cells were treated with various concentrations of PM2.5in vitro. Meibomian gland cell microstructure, cell viability, expression of proliferating cell nuclear antigen and IL-1ß, and intracellular accumulation of acidic vesicles were measured by transmission electron microscopy, cell counting, Western blot and LysoTracker staining, respectively. To further study the effect of PM2.5in vivo, male C57BL/6J mice were treated with 5 mg/ml PM2.5 or vehicle for 3 months. Corneal fluorescein staining and ocular examinations were done before and after the treatment. Eyelids tissues were processed for morphological studies, immunostaining and Oil Red O staining. Our data suggest that exposure to PM2.5 caused significant meibomian gland dropout, clogged gland orifice and increased corneal fluorescein staining that were consistent with the clinical presentations of meibomian gland dysfunction. Prominent changes in the morphology and ultrastructure of meibomian glands was observed with PM2.5 treatment. PM2.5 promoted ductal keratinization, inhibited cell proliferation, induced cell apoptosis and increased Interleukin-1ß production in meibomian gland epithelial cells. This study may explain the association between PM2.5 exposure and meibomian gland dropout observed in clinic. PM2.5 resuspension instillation could be used to induce a meibomian gland dysfunction animal model.

2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33952698

RESUMO

Galectin-3 (Gal-3) has a long, aperiodic, and dynamic proline-rich N-terminal tail (NT). The functional role of the NT with its numerous prolines has remained enigmatic since its discovery. To provide some resolution to this puzzle, we individually mutated all 14 NT prolines over the first 68 residues and assessed their effects on various Gal-3-mediated functions. Our findings show that mutation of any single proline (especially P37A, P55A, P60A, P64A/H, and P67A) dramatically and differentially inhibits Gal-3-mediated cellular activities (i.e., cell migration, activation, endocytosis, and hemagglutination). For mechanistic insight, we investigated the role of prolines in mediating Gal-3 oligomerization, a fundamental process required for these cell activities. We showed that Gal-3 oligomerization triggered by binding to glycoproteins is a dynamic process analogous to liquid-liquid phase separation (LLPS). The composition of these heterooligomers is dependent on the concentration of Gal-3 as well as on the concentration and type of glycoprotein. LLPS-like Gal-3 oligomerization/condensation was also observed on the plasma membrane and disrupted endomembranes. Molecular- and cell-based assays indicate that glycan binding-triggered Gal-3 LLPS (or LLPS-like) is driven mainly by dynamic intermolecular interactions between the Gal-3 NT and the carbohydrate recognition domain (CRD) F-face, although NT-NT interactions appear to contribute to a lesser extent. Mutation of each proline within the NT differentially controls NT-CRD interactions, consequently affecting glycan binding, LLPS, and cellular activities. Our results unveil the role of proline polymorphisms (e.g., at P64) associated with many diseases and suggest that the function of glycosylated cell surface receptors is dynamically regulated by Gal-3.


Assuntos
Galectina 3/química , Galectina 3/metabolismo , Polissacarídeos/metabolismo , Prolina/metabolismo , Sítios de Ligação , Proteínas Sanguíneas/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Carboidratos , Galectina 3/genética , Galectinas , Glicosilação , Humanos , Ligação Proteica
3.
J Environ Sci (China) ; 139: 93-104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105081

RESUMO

Waste resource utilization of petroleum coke is crucial for achieving global carbon emission reduction. Herein, a series of N-doped microporous carbons were fabricated from petroleum coke using a one-pot synthesis method. The as-prepared samples had a large specific surface area (up to 2512 m2/g), a moderate-high N content (up to 4.82 at.%), and high population (55%) of ultra-micropores (<0.7 nm). Regulating the N content and ultra-microporosity led to efficient CO2 adsorption and separation. At ambient pressure, the optimal N-doped petroleum coke-based microporous carbon exhibited the highest CO2 uptake of 4.25 mmol/g at 25°C and 6.57 mmol/g at 0°C. These values are comparable or even better than those of numerous previously reported adsorbents prepared by multistep synthesis, primarily due to the existence of ultra-micropores. The sample exhibited excellent CO2/N2 selectivity at 25°C owing to the abundant basic pyridinic and pyrrolic N species; and showed superior CO2 adsorption-desorption cycling performance, which was maintained at 97% after 10 cycles at 25°C. Moreover, petroleum coke-based microporous carbon, with a considerably high specific surface area and hierarchical pore structure, exhibited excellent electrochemical performance over the N-doped sample, maintaining a favorable specific capacitance of 233.25 F/g at 0.5 A/g in 6 mol/L KOH aqueous electrolyte. This study provides insight into the influence of N-doping on the porous properties of petroleum coke-based carbon. Furthermore, the as-prepared carbons were found to be promising adsorbents for CO2 adsorption, CO2/N2 separation and electrochemical application.


Assuntos
Carbono , Coque , Carbono/química , Dióxido de Carbono/química , Adsorção , Porosidade
4.
J Biol Chem ; 296: 100515, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676890

RESUMO

Heat-modified citrus pectin, a water-soluble indigestible polysaccharide fiber derived from citrus fruits and modified by temperature treatment, has been reported to exhibit anticancer effects. However, the bioactive fractions and their mechanisms remain unclear. In this current study, we isolated an active compound, trans-4,5-dihydroxy-2-cyclopentene-l-one (DHCP), from heat-treated citrus pectin, and found that is induces cell death in colon cancer cells via induction of mitochondrial ROS. On the molecular level, DHCP triggers ROS production by inhibiting the activity of succinate ubiquinone reductase (SQR) in mitochondrial complex II. Furthermore, cytotoxicity, apoptotic activity, and activation of caspase cascades were determined in HCT116 and HT-29 cell-based systems, the results indicated that DHCP enhances the sensitivity of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with DHCP-induced ROS accounting for the synergistic effect between DHCP and TRAIL. Furthermore, the combination of DHCP and TRAIL inhibits the growth of HCT116 and HT-29 xenografts synergistically. ROS significantly increases the expression of TRAIL death receptor 5 (DR5) via the p53 and C/EBP homologous protein pathways. Collectively, our findings indicate that DHCP has a favorable toxicity profile and is a new TRAIL sensitizer that shows promise in the development of pectin-based pharmaceuticals, nutraceuticals, and dietary agents aimed at combating human colon cancer.


Assuntos
Citrus/química , Neoplasias do Colo/tratamento farmacológico , Ciclopentanos/farmacologia , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Crit Rev Food Sci Nutr ; 61(4): 535-552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32180435

RESUMO

Functional sugars have unique structural and physiological characteristics with applied perspectives for modern biomedical and biotechnological sectors, such as biomedicine, pharmaceutical, cosmeceuticals, green chemistry, and agro-food. They can also be used as starting matrices to produce biologically active metabolites of interests. Though numerous chemical synthesis routes have been proposed and deployed for the synthesis of rare sugars, however, many of them are limited and economically incompetent because of expensive raw starting feedstocks. Whereas, the biosynthesis by enzymatic means are often associated with high catalyst costs and low space-time yields. Microbial production of rare sugars via green routes using bio-renewable resources offers noteworthy solutions to overcome the aforementioned limitations of synthetic and enzymatic synthesis routes. From the microbial-based synthesis perspective, the lipogenic yeast Yarrowia lipolytica is rapidly evolving as the most prevalent and unique "non-model organism" in the bio-production arena. Due to high flux tendency through the tri-carboxylic acid cycle intermediates and precursors such as acetyl-CoA and malonyl-CoA, this yeast has been widely investigated to meet the increasing demand of industrially relevant fine chemicals, including functional sugars. Incredible interest in Y. lipolytica originates from its robust tolerance to unstable pH, salt levels, and organic compounds, which subsequently enable easy bioprocess optimization. Meaningfully, GRAS (generally recognized as safe) status creates Y. lipolytica as an attractive and environmentally friendly microbial host for the manufacturing of nutraceuticals, fermented food, and dietary supplements. In this review, we highlight the recent and state-of-the-art research progress on Y. lipolytica as a host to synthesize bio-based compounds of interest beyond the realm of well-known fatty acid production. The unique physicochemical properties, biotechnological applications, and biosynthesis of an array of value-added functional sugars including erythritol, threitol, fructooligosaccharides, galactooligosaccharides, isomalto-oligosaccharides, isomaltulose, trehalose, erythrulose, xylitol, and mannitol using sustainable carbon sources are thoroughly vetted. Finally, we conclude with perspectives that would be helpful to engineer Y. lipolytica in greening the twenty-first century biomedical and biotechnological sectors of the modern world.


Assuntos
Yarrowia , Biotecnologia , Ácidos Graxos , Engenharia Metabólica , Açúcares , Yarrowia/genética
6.
Crit Rev Food Sci Nutr ; 61(21): 3537-3554, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32820646

RESUMO

In recent years, biorefinery approach with a zero-waste concept has gained a lot research impetus to boost the environment and bioeconomy in a sustainable manner. The wastewater from sugar industries contains miscellaneous compounds and need to be treated chemically or biologically before being discharged into water bodies. Efficient utilization of wastewater produced by sugar industries is a key point to improve its economy. Thus, interest in the sugar industry wastes has grown in both fundamental and applied research fields, over the years. Although, traditional methods being used to process such wastewaters are effective yet are tedious, laborious and time intensive. Considering the diverse nature of wastewaters from various sugar-manufacturing processes, the development of robust, cost-competitive, sustainable and clean technologies has become a challenging task. Under the recent scenario of cleaner production and consumption, the biorefinery and/or close-loop concept, though using different technologies and multi-step processes, namely, bio-reduction, bio-accumulation or biosorption using a variety of microbial strains, has stepped-up as the method of choice for a sustainable exploitation of a wide range of organic waste matter along with the production of high-value products of industrial interests. This review comprehensively describes the use of various microbial strains employed for eliminating the environmental pollutants from sugar industry wastewater. Moreover, the main research gaps are also critically discussed along with the prospects for the efficient purification of sugar industry wastewaters with the concomitant production of high-value products using a biorefinery approach. In this review, we emphasized that the biotransformation/biopurification of sugar industry waste into an array of value-added compounds such as succinic acid, L-arabinose, solvents, and xylitol is a need of hour and is futuristic approach toward achieving cleaner production and consumption.


Assuntos
Açúcares , Águas Residuárias , Biocombustíveis , Resíduos Industriais
7.
Environ Sci Technol ; 54(9): 5409-5418, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32259434

RESUMO

Naphthalene (NAP), as a surrogate of intermediate-volatility organic compounds (IVOCs), has been proposed to be an important precursor of secondary organic aerosol (SOA). However, the relative contribution of its emission sources is still not explicit. This study firstly conducted the source apportionment of atmospheric NAP using a triple-isotope (δ13C, δ2H, and Δ14C) technique combined with a Bayesian model in the Beijing-Tianjin-Hebei (BTH) region of China. At the urban sites, stable carbon (-27.7 ± 0.7‰, δ13C) and radiocarbon (-944.0 ± 20.4‰, Δ14C) isotope compositions of NAP did not exhibit significant seasonal variation, but the deuterium system showed a relatively more 2H depleted signature in winter (-86.7 ± 8.9‰, δ2H) in comparison to that in summer (-56.4 ± 3.9‰, δ2H). Radiocarbon signatures indicated that 95.1 ± 1.8% of NAP was emitted from fossil sources in these cities. The Bayesian model results indicated that the emission source compositions in the BTH urban sites had a similar pattern. The contribution of liquid fossil combustion was highest (46.7 ± 2.6%), followed by coal high-temperature combustion (26.8 ± 7.1%), coal low-temperature combustion (18.9 ± 6.4%), and biomass burning (7.6 ± 3.1%). At the suburban site, the contribution of coal low-temperature combustion could reach 70.1 ± 6.4%. The triple-isotope based approach provides a top-down constraint on the sources of atmospheric NAP and could be further applied to other IVOCs in the ambient atmosphere.


Assuntos
Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis , Teorema de Bayes , Pequim , China , Cidades , Monitoramento Ambiental , Isótopos , Naftalenos , Volatilização
8.
Crit Rev Biotechnol ; 39(2): 202-219, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30394121

RESUMO

Engineering enzymes with improved catalytic properties in non-natural environments have been concerned with their diverse industrial and biotechnological applications. Immobilization represents a promising but straightforward route, and immobilized biocatalysts often display higher activities and stabilities compared to free enzymes. Owing to their unique physicochemical characteristics, including the high-specific surface area, exceptional chemical, electrical, and mechanical properties, efficient enzyme loading, and multivalent functionalization, nano-based materials are postulated as suitable carriers for biomolecules or enzyme immobilization. Enzymes immobilized on nanomaterial-based supports are more robust, stable, and recoverable than their pristine counterparts, and are even used for continuous catalytic processes. Furthermore, the unique intrinsic properties of nanomaterials, particularly nanoparticles, also confer the immobilized enzymes to be used for their broader applications. Herein, an effort has been made to present novel potentialities of multi-point enzyme immobilization in the current biotechnological sector. Various nano-based platforms for enzyme/biomolecule immobilization are discussed in the second part of the review. In summary, recent developments in the use of nanomaterials as new carriers to construct robust nano-biocatalytic systems are reviewed, and future trends are pointed out in this article.


Assuntos
Enzimas Imobilizadas/química , Biocatálise , Cerâmica/química , Estabilidade Enzimática , Grafite/química , Nanoestruturas/química , Polímeros/química , Propriedades de Superfície
9.
Environ Sci Technol ; 53(13): 7632-7640, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31157973

RESUMO

Hierarchical porous carbon shows great potential for volatile organic compounds (VOCs) removal due to its high surface area and abundant porous framework. However, current fabrication protocols are complex and cause secondary pollution, limiting their application. Here, as a novel strategy, microbial lignocellulose decomposition as a pretreatment was introduced to fabricate hierarchical porous carbon (M-AC) from crude biomass substrate. The M-AC samples had high specific surface areas (maximum: 2290 m2·g-1) and surfaces characterized by needle-like protrusions with a high degree of disorder attributed to hierarchical porous structures. Dynamic toluene adsorption indicated that the carbon materials with microbial pretreatment had much better adsorption performances (maximum: 446 mg/g) than activated carbon without pretreatment. The M-AC material pretreated with a cellulose-degrading microbe showed the best adsorption capacity due to well-developed micropores, whereas the M-AC material pretreated with a lignin-degrading microbe showed excellent transport diffusion due to well-developed mesopores. Therefore, this simple and effective approach using microbial decomposition pretreatment is promising for the development of hierarchical porous carbons with adjustable pore structures and high specific surface areas to remove target VOCs in practical applications.


Assuntos
Carvão Vegetal , Tolueno , Adsorção , Biomassa , Porosidade
10.
Appl Microbiol Biotechnol ; 103(13): 5143-5160, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31101942

RESUMO

Xylitol is a natural five-carbon sugar alcohol with potential for use in food and pharmaceutical industries owing to its insulin-independent metabolic regulation, tooth rehardening, anti-carcinogenic, and anti-inflammatory, as well as osteoporosis and ear infections preventing activities. Chemical and biosynthetic routes using D-xylose, glucose, or biomass hydrolysate as raw materials can produce xylitol. Among these methods, microbial production of xylitol has received significant attention due to its wide substrate availability, easy to operate, and eco-friendly nature, in contrast with high-energy consuming and environmental-polluting chemical method. Though great advances have been made in recent years for the biosynthesis of xylitol from xylose, glucose, and biomass hydrolysate, and the yield and productivity of xylitol are substantially improved by metabolic engineering and optimizing key metabolic pathway parameters, it is still far away from industrial-scale biosynthesis of xylitol. In contrary, the chemical synthesis of xylitol from xylose remains the dominant route. Economic and highly efficient xylitol biosynthetic strategies from an abundantly available raw material (i.e., glucose) by engineered microorganisms are on the hard way to forwarding. However, synthetic biology appears as a novel and promising approach to develop a super yeast strain for industrial production of xylitol from glucose. After a brief overview of chemical-based xylitol production, we critically analyzed and comprehensively summarized the major metabolic strategies used for the enhanced biosynthesis of xylitol in this review. Towards the end, the study is wrapped up with current challenges, concluding remarks, and future prospects for designing an industrial yeast strain for xylitol biosynthesis from glucose.


Assuntos
Microbiologia Industrial/economia , Engenharia Metabólica/economia , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Biologia Sintética/economia , Xilitol/biossíntese , Fermentação , Glucose/metabolismo , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Álcoois Açúcares/metabolismo , Biologia Sintética/métodos , Biologia Sintética/tendências , Xilose/metabolismo
11.
Microb Cell Fact ; 17(1): 133, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157840

RESUMO

BACKGROUND: Erythritol is a four-carbon sugar alcohol with sweetening properties that is used by the agro-food industry as a food additive. In the yeast Yarrowia lipolytica, the last step of erythritol synthesis involves the reduction of erythrose by specific erythrose reductase(s). In the earlier report, an erythrose reductase gene (YALI0F18590g) from erythritol-producing yeast Y. lipolytica MK1 was identified (Janek et al. in Microb Cell Fact 16:118, 2017). However, deletion of the gene in Y. lipolytica MK1 only resulted in some lower erythritol production but the erythritol synthesis process was still maintained, indicating that other erythrose reductase gene(s) might exist in the genome of Y. lipolytica. RESULTS: In this study, we have isolated genes g141.t1 (YALI0D07634g) and g3023.t1 (YALI0C13508g) encoding two novel erythrose reductases (ER). The biochemical characterization of the purified enzymes showed that they have a strong affinity for erythrose. Deletion of the two ER genes plus g801.t1 (YALI0F18590g) did not prevent erythritol synthesis, suggesting that other ER or ER-like enzymes remain to be discovered in this yeast. Overexpression of the newly isolated two genes (ER10 or ER25) led to an average 14.7% higher erythritol yield and 31.2% higher productivity compared to the wild-type strain. Finally, engineering NADPH cofactor metabolism by overexpression of genes ZWF1 and GND1 encoding glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, respectively, allowed a 23.5% higher erythritol yield and 50% higher productivity compared to the wild-type strain. The best of our constructed strains produced an erythritol titer of 190 g/L in baffled flasks using glucose as main carbon source. CONCLUSIONS: Our results highlight that in the Y. lipolytica genome several genes encode enzymes able to reduce erythrose into erythritol. The catalytic properties of these enzymes and their cofactor dependency are different from that of already known erythrose reductase of Y. lipolytica. Constitutive expression of the newly isolated genes and engineering of NADPH cofactor metabolism led to an increase in erythritol titer. Development of fermentation strategies will allow further improvement of this productivity in the future.


Assuntos
Eritritol/metabolismo , Engenharia Metabólica/métodos , NADH NADPH Oxirredutases/metabolismo , Yarrowia/metabolismo
12.
Anticancer Drugs ; 28(1): 66-74, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27603596

RESUMO

Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) is a cytokine that selectively induces apoptosis in many tumor cells while leaving normal cells intact and is thus an attractive candidate for antitumor therapies. This paper reports that the combination of tunicamycin plus TRAIL produced a strong synergistic effect in TRAIL-sensitive human colon cancer HCT116 cells and TRAIL-resistant HT-29 cells. On a cellular mechanistic level, tunicamycin-enhanced TRAIL-induced apoptosis by death receptor (DR) 5 upregulation and DR4 deglycosylation. Knockdown of DR5 but not DR4 expression by specific shRNAs or siRNAs significantly increased tunicamycin-mediated and TRAIL-mediated cell viability. DR5 induction was regulated by C/EBP homologous protein (CHOP) and JNK as CHOP siRNA or JNK inhibitor SP600125 considerably abolished the DR5 induction. In addition, tunicamycin inhibited epidermal growth factor receptor glycosylation and the downstream signaling pathways, Akt and extracellular signal-regulated kinases activation, which might also be required for TRAIL sensitization by tunicamycin. In summary, tunicamycin effectively enhanced TRAIL-induced apoptosis might through JNK-CHOP-mediated DR5 upregulation and the inhibition of the epidermal growth factor receptor pathway.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Tunicamicina/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Fator de Transcrição CHOP/metabolismo , Tunicamicina/administração & dosagem , Regulação para Cima/efeitos dos fármacos
13.
Apoptosis ; 21(11): 1291-1301, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27629794

RESUMO

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a potent cancer cell-specific apoptosis-inducing cytokine with little toxicity to most normal cells. Here, we report that gefitinib and TRAIL in combination produce a potent synergistic effect on TRAIL-sensitive human colon cancer HCT116 cells and an additive effect on TRAIL-resistant HT-29 cells. Interestingly, gefitinib increases the expression of cell surface receptors DR4 and DR5, possibly explaining the synergistic effect. Knockdown of DR4 and DR5 by siRNA significantly decreases gefitinib- and TRAIL-mediated cell apoptosis, supporting this idea. Because the inhibition of gefitinib-induced autophagy by 3-MA significantly decreases DR4 and DR5 upregulation, as well as reduces gefitinib- and TRAIL-induced apoptosis, we conclude that death receptor upregulation is autophagy mediated. Furthermore, our results indicate that death receptor expression may also be regulated by JNK activation, because pre-treatment of cells with JNK inhibitor SP600125 significantly decreases gefitinib-induced death receptor upregulation. Interestingly, SP600125 also inhibits the expression CHOP, yet CHOP has no impact on death receptor expressions. We also find here that phosphorylation of Akt and ERK might also be required for TRAIL sensitization. In summary, our results indicate that gefitinib effectively enhances TRAIL-induced apoptosis, likely via autophagy and JNK- mediated death receptor expression and phosphorylation of Akt and ERK.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias do Colo/fisiopatologia , Quinazolinas/farmacologia , Receptores de Morte Celular/genética , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Gefitinibe , Células HT29 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Receptores de Morte Celular/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Microb Cell Fact ; 15: 82, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27184671

RESUMO

BACKGROUND: The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. RESULTS: In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m(3) bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, L-arabinose and galactose were depleted simultaneously. CONCLUSIONS: Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is efficient under optimized conditions. Moreover, our study of one-pot biotransformation also provides useful information on the combination of biotechnological processes for the biotransformation of other compounds.


Assuntos
Bacillus subtilis/metabolismo , Candida tropicalis/metabolismo , Xilitol/biossíntese , Xilose/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Reatores Biológicos , Candida tropicalis/crescimento & desenvolvimento , Candida tropicalis/isolamento & purificação , Monossacarídeos/metabolismo , Eliminação de Resíduos Líquidos
15.
Biochem Biophys Res Commun ; 466(3): 362-8, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26361149

RESUMO

Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway.


Assuntos
Cisplatino/química , Resistencia a Medicamentos Antineoplásicos , Glicoproteínas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Neoplasias do Colo do Útero/metabolismo , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular , Feminino , Células HeLa/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias do Colo do Útero/genética
16.
Appl Microbiol Biotechnol ; 98(5): 2091-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23852641

RESUMO

Thermoanaerobacter tengcongensis MB4 glucoamylase (TteGA) contains a catalytic domain (CD), which is structurally similar to eukaryotic GA, and a ß domain (BD) with ambiguous function. Firstly, BD is found to be essential to TteGA activity because CD alone could not hydrolyze soluble starch. However, starch hydrolysis activity, similar to that of intact TteGA, was restored to CD in the presence of BD. Secondly, BD is found to be an important helper in the correct folding of CD because CD was mainly expressed in the inclusion bodies on its own in Escherichia coli. By contrast, intact TteGA, BD, and CD combined with BD could be expressed as soluble proteins. Additionally, BD is essential to the thermostability of TteGA because CD displayed lower thermostability compared with the intact TteGA and exhibited enhanced thermostability in the presence of BD in vitro. Truncation of TteGA or mutagenesis of the residues that participate in the interdomain interaction at its BD also led to the reduced thermostability of TteGA.


Assuntos
Glucana 1,4-alfa-Glucosidase/metabolismo , Thermoanaerobacter/enzimologia , Estabilidade Enzimática , Escherichia coli/genética , Glucana 1,4-alfa-Glucosidase/química , Glucana 1,4-alfa-Glucosidase/genética , Hidrólise , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Amido/metabolismo , Temperatura
17.
Appl Microbiol Biotechnol ; 98(8): 3539-52, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24419799

RESUMO

Xylitol is industrially synthesized by chemical reduction of D-xylose, which is more expensive than glucose. Thus, there is a growing interest in the production of xylitol from a readily available and much cheaper substrate, such as glucose. The commonly used yeast Pichia pastoris strain GS115 was shown to produce D-arabitol from glucose, and the derivative strain GS225 was obtained to produce twice amount of D-arabitol than GS115 by adaptive evolution during repetitive growth in hyperosmotic medium. We cloned the D-xylulose-forming D-arabitol dehydrogenase (DalD) gene from Klebsiella pneumoniae and the xylitol dehydrogenase (XDH) gene from Gluconobacter oxydans. Recombinant P. pastoris GS225 strains with the DalD gene only or with both DalD and XDH genes could produce xylitol from glucose in a single-fermentation process. Three-liter jar fermentation results showed that recombinant P. pastoris cells with both DalD and XDH converted glucose to xylitol with the highest yield of 0.078 g xylitol/g glucose and productivity of 0.29 g xylitol/L h. This was the first report to convert xylitol from glucose by the pathway of glucose-D-arabitol-D-xylulose-xylitol in a single process. The recombinant yeast could be used as a yeast cell factory and has the potential to produce xylitol from glucose.


Assuntos
Glucose/metabolismo , Engenharia Metabólica , Pichia/metabolismo , Xilitol/metabolismo , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Fermentação , Gluconobacter oxydans/enzimologia , Gluconobacter oxydans/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Desidrogenase do Álcool de Açúcar/genética , Desidrogenase do Álcool de Açúcar/metabolismo
18.
J Environ Sci (China) ; 26(4): 810-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25079411

RESUMO

In January 2013, a long-lasting severe haze episode occurred in Northern and Central China; at its maximum, it covered a land area of approximately 1.4 million km(2). In Wuhan, the largest city in Central China, this event was the most severe haze episode in the 21st century. Aerosol samples of submicron particles (PM1.0) were collected during the long-lasting haze episode at an urban site and a suburban site in Wuhan to investigate the ion characteristics of PM1.0 in this area. The mass concentrations of PM1.0 and its water-soluble inorganic ions (WSIIs) were almost at the same levels at two sites, which indicates that PM1.0 pollution occurs on a regional scale in Wuhan. WSIIs (Na(+), NH4(+), K(+), Mg(2+), Ca(2+), Cl(-), NO3(-) and SO4(2-)) were the dominant chemical species and constituted up to 48.4% and 47.4% of PM1.0 at WD and TH, respectively. The concentrations of PM1.0 and WSIIs on haze days were approximately two times higher than on normal days. The ion balance calculations indicate that the particles were more acidic on haze days than on normal days. The results of the back trajectory analysis imply that the high concentrations of PM1.0 and its water-soluble inorganic ions may be caused by stagnant weather conditions in Wuhan.


Assuntos
Poluição do Ar/análise , Íons/análise , Material Particulado/química , China , Cidades/estatística & dados numéricos , Tempo (Meteorologia)
19.
Sci Total Environ ; 921: 170715, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331296

RESUMO

Understanding the sources and formation mechanisms of nitrate in PM2.5 is important for effective and precise prevention and control of particulate matter pollution. In this study, we detected stable nitrogen and oxygen isotope signatures of NO- 3 (expressed as δ15N-NO- 3 and δ18O-NO3-) in PM2.5 samples in Wuhan, the largest city in central China. The sources and formation pathways of NO3- were quantitatively analyzed using the modified version of the Bayesian isotope mixing (MixSIR) model, and the regional transport characteristics of NO3- were analyzed using the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model and concentration-weighted trajectory (CWT) method. The results showed that NO3- significantly contributed to the ambient PM2.5 pollution and its driving effect increased with the gradient of pollution level. The average δ15N-NO3- and δ18O-NO3- values were 4.7 ± 0.9 ‰ and 79.7 ± 2.9 ‰, respectively. δ15N-NO3- and δ18O-NO3- were more enriched in winter and increased dramatically in heavily polluted days. The reaction pathway of NO2 + OH dominated nitrate formation in summer, while the reaction pathway of N2O5+ H2O dominated in other seasons and contributed more in polluted days than clean days. The contributions of vehicle emission, coal combustion, biomass burning, biogenic soil emission, and ship emission sources to NO3- were 26.4 %, 23.4 %, 22.8 %, 15.3 %, and 12.1 %, respectively. In addition to local emissions, air mass transport from the northern China had a significant impact on particulate NO3- in Wuhan. Overall, we should pay special attention to vehicle and ship emissions and winter coal combustion emissions in future policymaking.

20.
J Am Chem Soc ; 135(5): 1739-48, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23301954

RESUMO

Streptonigrin (STN, 1) is a highly functionalized aminoquinone alkaloid with broad and potent antitumor activity. Here, we reported the biosynthetic gene cluster of STN identified by genome scanning of a STN producer Streptomyces flocculus CGMCC4.1223. This cluster consists of 48 genes determined by a series of gene inactivations. On the basis of the structures of intermediates and shunt products accumulated from five specific gene inactivation mutants and feeding experiments, the biosynthetic pathway was proposed, and the sequence of tailoring steps was preliminarily determined. In this pathway, a cryptic methylation of lavendamycin was genetically and biochemically characterized to be catalyzed by a leucine carboxyl methyltransferase StnF2. A [2Fe-2S](2+) cluster-containing aromatic ring dioxygenase StnB1/B2 system was biochemically characterized to catalyze a regiospecific cleavage of the N-C8' bond of the indole ring of the methyl ester of lavendamycin. This work provides opportunities to illuminate the enzymology of novel reactions involved in this pathway and to create, using genetic and chemo-enzymatic methods, new streptonigrinoid analogues as potential therapeutic agents.


Assuntos
Proteína O-Metiltransferase/metabolismo , Estreptonigrina/biossíntese , Biocatálise , Metilação , Estrutura Molecular , Oxirredução , Proteína O-Metiltransferase/genética , Streptomyces/enzimologia , Estreptonigrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA