RESUMO
The lifetime effects of repetitive head impacts have captured considerable public and scientific interest over the past decade, yet a knowledge gap persists in our understanding of midlife neurological well-being, particularly in amateur level athletes. This study aimed to identify the effects of lifetime exposure to sports-related head impacts on brain morphology in retired, amateur athletes. This cross-sectional study comprised of 37 former amateur contact sports athletes and 21 age- and sex-matched noncontact athletes. High-resolution anatomical, T1 scans were analyzed for the cortical morphology, including cortical thickness, sulcal depth, and sulcal curvature, and cognitive function was assessed using the Dementia Rating Scale-2. Despite no group differences in cognitive functions, the contact group exhibited significant cortical thinning particularly in the bilateral frontotemporal regions and medial brain regions, such as the cingulate cortex and precuneus, compared to the noncontact group. Deepened sulcal depth and increased sulcal curvature across all four lobes of the brain were also notable in the contact group. These data suggest that brain morphology of middle-aged former amateur contact athletes differs from that of noncontact athletes and that lifetime exposure to repetitive head impacts may be associated with neuroanatomical changes.
Assuntos
Atletas , Córtex Cerebral , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/anatomia & histologia , Estudos Transversais , Pessoa de Meia-Idade , Traumatismos em Atletas/patologia , Traumatismos em Atletas/diagnóstico por imagem , Idoso , Concussão Encefálica/patologia , Concussão Encefálica/diagnóstico por imagem , Cognição/fisiologiaRESUMO
The pursuit of innovative therapeutic strategies in oncology remains imperative, given the persistent global impact of cancer as a leading cause of mortality. Immunotherapy is regarded as one of the most promising techniques for systemic cancer therapies among the several therapeutic options available. Nevertheless, limited immune response rates and immune resistance urge us on an augmentation for therapeutic efficacy rather than sticking to conventional approaches. Ferroptosis, a novel reprogrammed cell death, is tightly correlated with the tumor immune environment and interferes with cancer progression. Highly mutant or metastasis-prone tumor cells are more susceptible to iron-dependent nonapoptotic cell death. Consequently, ferroptosis-induction therapies hold the promise of overcoming resistance to conventional treatments. The most prevalent post-transcriptional modification, RNA m6A modification, regulates the metabolic processes of targeted RNAs and is involved in numerous physiological and pathological processes. Aberrant m6A modification influences cell susceptibility to ferroptosis, as well as the expression of immune checkpoints. Clarifying the regulation of m6A modification on ferroptosis and its significance in tumor cell response will provide a distinct method for finding potential targets to enhance the effectiveness of immunotherapy. In this review, we comprehensively summarized regulatory characteristics of RNA m6A modification on ferroptosis and discussed the role of RNA m6A-mediated ferroptosis on immunotherapy, aiming to enhance the effectiveness of ferroptosis-sensitive immunotherapy as a treatment for immune-resistant malignancies.
Assuntos
Ferroptose , Imunoterapia , Neoplasias , Ferroptose/genética , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Imunoterapia/métodos , Animais , Adenosina/análogos & derivados , Adenosina/metabolismo , Regulação Neoplásica da Expressão Gênica , Processamento Pós-Transcricional do RNA , Metilação de RNARESUMO
Immunogenicity can be evaluated by detecting antibodies (Abs) induced by an antigen. Presently deployed assays, however, do not consider the negative impacts of Ab poly-specificity, which is well established at the monoclonal antibody level. Here, we studied antibody poly-specificity at the serum level (i.e. nonspecific Ab-probe interactions, NSIs), and ended up establishing a new platform for viral peptide immunogenicity evaluation. We first selected three peptides of high, medium and low immunogenicity, using a 'vaccine serum response rate'-based approach (i.e. the gold standard). These three peptides (Pi) in the bovine serum albumin-Pi form were used to immunize chickens, resulting in longitudinal serum samples for screening with a non-cognate peptide library. The signal intensity of Ab-peptide specific binding and 'NSI count' was used to evaluate the viral peptides' immunogenicity. Only the NSI count agreed with the gold standard. The NSI count also provides more informative data on antibody production than the aggregated signal intensity by whole-protein-based indirect enzyme-linked immunosorbent assay.
Assuntos
Especificidade de Anticorpos , Imunoglobulinas , Peptídeos , Proteínas Virais , Biblioteca de Peptídeos , Imunoglobulinas/sangue , Animais , Galinhas , Vírus da Doença de Newcastle/imunologia , Peptídeos/imunologia , Ensaio de Imunoadsorção Enzimática , Formação de Anticorpos , Proteínas Virais/imunologiaRESUMO
OBJECTIVE: This study aims to examine the effect of the Mediterranean diet (MeDi) on cognitive decline among the Chinese elderly with a 3-year follow-up. METHODS: This study is divided into two waves: wave-1 January 2019 to June 2019 (n = 2313); wave-2 January 2022 to March 2022 (n = 1648). MeDi scores were calculated from the Mediterranean Diet Adherence Screener (MEDAS), with the scoring of low compliance (0-6 points) and high compliance (7-14 points). The Mini-Mental State Examination (MMSE) was used to assess cognitive function. An MMSE score dropping ≥ 2 points from baseline was defined as cognitive decline. The relationships between MeDi score and cognitive decline were analyzed by linear regression models or Binary logistic regression. RESULTS: During the 3-year follow-up, 23.8% of patients exhibited cognitive decline. The study revealed a significant difference in MMSE score changes between low and high MeDi adherence groups (p < 0.001). MeDi score was negatively correlated with cognitive deterioration (ß = -0.020, p = 0.026). MeDi score was only negatively associated with cognitive decline in the female subgroup aged ≥65 years (ß = -0.034, p = 0.033). The food beans (OR = 0.65, 95%CI:0.51, 0.84), fish (OR = 0.72, 95%CI:0.54, 0.97), and cooked vegetables (OR = 0.68, 95%CI:0.53, 0.84) were protective factors for cognitive decline. CONCLUSIONS: This study suggests that greater adherence to the MeDi is linked to a reduced risk of cognitive decline in elderly people. However, this is found only in women who are 65 years old or older. It also found long-term adherence to beans, fish, and vegetables are more effective in improving cognitive function.
RESUMO
The PD-1/PD-L1 pathway is considered as one of the most promising immune checkpoints in tumour immunotherapy. However, researchers are faced with the inherent limitations of antibodies, driving them to pursue PD-L1 small molecule inhibitors. Virtual screening followed by experimental validation is a proven approach to discover active compounds. In this study, we employed multistage virtual screening methods to screen multiple compound databases to predict new PD-1/PD-L1 ligands. 35 compounds were proposed by combined analysis of fitness scores, interaction pattern and MM-GBSA binding affinities. Enzymatic assay confirmed that 10 out of 35 ligands were potential PD-L1 inhibitors, with inhibitory rate higher than 50% at the concentration of 30 µM. Among them, ZDS20 was identified as the most effective inhibitor with low micromolar activity (IC50 = 3.27 µM). Altogether, ZDS20 carrying novel scaffold was identified and could serve as a lead for the development of new classes of PD-L1 inhibitors.
Assuntos
Antígeno B7-H1 , Avaliação Pré-Clínica de Medicamentos , Receptor de Morte Celular Programada 1 , Bibliotecas de Moléculas Pequenas , Humanos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia , Ligantes , Estrutura Molecular , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-AtividadeRESUMO
Cyanobacterial blooms pose a global environmental concern, with various genera contributing to their formation. The harmfulness of cyanobacterial blooms varies depending on the specific genus, yet the factors triggering their formation remain incompletely understood. This study conducted qPCR of sediment DNA in Lake Erhai to reconstruct the historical succession of three common bloom-forming cyanobacterial genera (i.e., Microcystis, Dolichospermum, and Aphanizomenon). The driving factors and their corresponding thresholds were identified, and human activities related to driving factors were evaluated. The results revealed two successions in the past century. The first succession transitioned from Aphanizomenon (1902-1978) to Microcystis and Dolichospermum (1978-1999), driven by TN:TP and TP. The second succession shifted from Microcystis and Dolichospermum (1978-1999) to Microcystis (1999-2010), driven by TP, TN:TP, and temperature. The thresholds of TP and TN:TP for the Microcystis bloom were 0.023 mg/L and 17, respectively. TN:TP was significantly influenced by domestic pollution and crop farming in both successions, while TP was significantly impacted by domestic pollution in the first succession and by pollution from crop and dairy farming in the second succession. These results shed light on the underlying mechanism responsible for the blooms of various cyanobacterial genera and could serve as a valuable reference for effectively preventing and controlling nutrient input in the watershed.
Assuntos
Cianobactérias , Microcystis , China , Eutrofização , Lagos/microbiologia , Microcystis/genética , NutrientesRESUMO
Serological assays are indispensable tools in public health. Presently deployed serological assays, however, largely overlook research progress made in the last two decades that jeopardizes the conceptual foundation of these assays, i.e., antibody (Ab) specificity. Challenges to traditional understanding of Ab specificity include Ab polyspecificity and most recently nonreproducible Ab-probe interactions (NRIs). Here, using SARS-CoV-2 and four common livestock viruses as a test bed, we developed a new serological platform that integrates recent understanding about Ab specificity. We first demonstrate that the response rate (RR) from a large-sized serum pool (â¼100) is not affected by NRIs or by nonspecific Ab-probe interactions (NSIs), so RR can be incorporated into the diagnostic probe selection process. We subsequently used multiple probes (configured as a "protein peptide hybrid microarray", PPHM) to generate a digital microarray index (DMI) and finally demonstrated that DMI-based analysis yields an extremely robust probabilistic trend that enables accurate diagnosis of viral infection that overcomes multiple negative impacts exerted by NSI/NRI. Thus, our study with SARS-CoV-2 confirms that the PPHM-RR-DMI platform enables very rapid development of serological assays that outperform traditional assays (for both sensitivity and specificity) and supports that the platform is extendable to other viruses.
RESUMO
Iron (oxyhydr)oxides and organic matter (OM) are intimately associated in natural environments, and their fate might be linked to sulfur during sulfidation-reoxidation cycling. However, the coupling of DOM molecular fractionation with Fe and S transformations following a full sulfidation-reoxidation cycle remains poorly understood. Here, we reacted Fh and Fh-OM associations with S(-II) anaerobically and then exposed the sulfidic systems to air. S(-II) preferentially reacted with Fh to form inorganic S (e.g., mackinawite, S0, and S22-) over being incorporated into OM as organic S and therefore indirectly affected OM fate by altering Fe speciation. Fh sulfidation was inhibited by associated OM, and the main secondary Fe species were mackinawite, Fe(II)-OM compounds, and lepidocrocite. Concomitantly, organic molecules high in unsaturation, aromaticity, and molecular weight were detached from solid-phase Fe species due to their lower affinities for secondary Fe species than for Fh. During the reoxidation stage, the previously formed Fe(II) species were reoxidized to Fh with a stronger aggregation, which recaptured formerly released OM with higher selectivity. Additionally, â¢OH was generated from Fe(II) oxygenation and degraded a portion of the DOM molecules. Overall, these results have significant implications for Fe, C, and S cycling in S-rich environments characterized by oscillating redox conditions.
Assuntos
Matéria Orgânica Dissolvida , Ferro , Minerais , Compostos Ferrosos , Compostos Férricos , Enxofre , Oxirredução , SulfetosRESUMO
Inhibition of PI3K pathway has become a desirable strategy for cancer treatment. In this work, a series of 2, 6, 8-substituted Imidazo[1,2-a]pyridine derivatives were designed and screened for their activities against PI3Kα and a panel of PI3Kα-addicted cancer cells. Among them, compound 35 was identified as a PI3Kα inhibitor with nanomolar potency as well as acceptable antiproliferative activity. Flow cytometry analysis confirmed 35 induced cell cycle arrest and apoptosis in T47D cells. In addition, it also showed desirable in vitro ADME properties. The design, synthesis, and SAR exploration of 35 are described within.
Assuntos
Antineoplásicos , Fosfatidilinositol 3-Quinases , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Piridinas/farmacologia , Desenho de Fármacos , Linhagem Celular TumoralRESUMO
The ecological effects of antibiotics in surface water have attracted increasing research attention. In this study, we investigated the combined ecotoxicity of erythromycin (ERY) and roxithromycin (ROX) on the microalgae, Chlorella pyrenoidosa, and the removal of ERY and ROX during the exposure. The calculated 96-h median effect concentration (EC50) values of ERY, ROX, and their mixture (2:1 w/w) were 7.37, 3.54, and 7.91 mgâL-1, respectively. However, the predicted EC50 values of ERY+ROX mixture were 5.42 and 1.51 mgâL-1, based on the concentration addition and independent action models, respectively. This demonstrated the combined toxicity of ERY+ ROX mixture showed an antagonistic effect on Chlorella pyrenoidosa. During the 14-d culture, low-concentration (EC10) treatments with ERY, ROX, and their mixture caused the growth inhibition rate to decrease during the first 12 d and increase slightly at 14 d. In contrast, high-concentration (EC50) treatments significantly inhibited microalgae growth (p < 0.05). Changes in the total chlorophyll contents, SOD and CAT activities, and MDA contents of microalgae suggested that individual treatments with ERY and ROX induced higher oxidative stress than combined treatments. After the 14-d culture time, residual Ery in low and high concentration Ery treatments were 17.75% and 74.43%, and the residual Rox were 76.54% and 87.99%, but the residuals were 8.03% and 73.53% in ERY+ ROX combined treatment. These indicated that antibiotic removal efficiency was higher in combined treatments than that in individual treatments, especially at low concentrations (EC10). Correlation analysis suggested that there was a significant negative correlation between the antibiotic removal efficiency of C. pyrenoidosa and their SOD activity and MDA content, and the enhanced antibiotic removal ability of microalgae benefited from increased cell growth and chlorophyll content. Findings in this study contribute to predicting ecological risk of coexisting antibiotics in aquatic environment, and to improving biological treatment technology of antibiotics in wastewater.
Assuntos
Chlorella , Microalgas , Roxitromicina , Poluentes Químicos da Água , Roxitromicina/toxicidade , Roxitromicina/análise , Eritromicina/toxicidade , Antibacterianos/toxicidade , Clorofila/análise , Superóxido Dismutase , Poluentes Químicos da Água/análiseRESUMO
Metal-organic frameworks (MOFs) are outstanding platforms for heterogeneous catalysis due to their tunable pore size, huge surface area, large porosity, and potential active sites. The design and synthesis of MOF/organocatalyst co-catalytic systems have attracted considerable interest owing to their high catalytic activity, low toxicity, and mild reaction conditions. Herein, we reported the synthesis of a bifunctional TEMPO-IsoNTA organocatalyst featuring a pyridyl group as an anchoring site and a TEMPO radical as a catalytic active site. By using the topologically isomorphic structures of MIL-101(Fe) and MIL-101(Cr) as co-catalysts, these MOF/TEMPO-IsoNTA systems enable the efficient aerobic oxidation of various alcohols to their corresponding aldehydes or ketones under mild conditions. Notably, the MIL-101(Fe)/TEMPO-IsoNTA system exhibits superior catalytic activity, thanks to their redox-active FeIII-oxo nodes, which facilitate the regeneration of TEMPO-IsoNTA. Our research not only solves the problem of potential heavy metal contamination in the TEMPO-based homogeneous catalytic system, but also enriches the understanding of synergism of MOFs/organocatalysts.
RESUMO
Antibody-antigen (Ab-Ag) interactions are canonically described by a model that exclusively accommodates noninteraction (0) or reproducible interaction (RI) states, yet this model is inadequate to explain often-encountered nonreproducible signals. Here, by monitoring diverse experimental systems using a peptide-protein hybrid microarray, we observed that Ab-probe interactions comprise a substantial proportion of nonreproducible antibody-based results. This enabled our discovery and capacity to reliably identify nonreproducible Ab-probe interactions (NRIs), as well as our development of a powerful explanatory model ("0-NRI-RI-Hook four-state model") that is mAb concentration-dependent, regardless of specificity, which ultimately shows that both nonspecific interactions and NRIs are not predictable yet certain to happen. Our discoveries challenge the centrality of Ab-Ag interaction specificity data in serology and immunology.
Assuntos
Anticorpos , Antígenos , Especificidade de Anticorpos , PeptídeosRESUMO
Naturalistic imaging paradigms, in which participants view complex videos in the scanner, are increasingly used in human cognitive neuroscience. Videos evoke temporally synchronized brain responses that are similar across subjects as well as within subjects, but the reproducibility of these brain responses across different data acquisition sites has not yet been quantified. Here, we characterize the consistency of brain responses across independent samples of participants viewing the same videos in functional magnetic resonance imaging (fMRI) scanners at different sites (Indiana University and Caltech). We compared brain responses collected at these different sites for two carefully matched datasets with identical scanner models, acquisition, and preprocessing details, along with a third unmatched dataset in which these details varied. Our overall conclusion is that for matched and unmatched datasets alike, video-evoked brain responses have high consistency across these different sites, both when compared across groups and across pairs of individuals. As one might expect, differences between sites were larger for unmatched datasets than matched datasets. Residual differences between datasets could in part reflect participant-level variability rather than scanner- or data- related effects. Altogether our results indicate promise for the development and, critically, generalization of video fMRI studies of individual differences in healthy and clinical populations alike.
Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Humanos , Individualidade , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos TestesRESUMO
OBJECTIVE: The effects of Otubain-2 (OTUB2) on the proliferation, invasion, and migration of esophageal squamous cell carcinoma (ESCC) were investigated by interfering with OTUB2 expression. METHODS: Bioinformatics analysis was used to analyze OTUB2 expression in esophageal carcinoma and interactions between OTUB2 and YAP1/TAZ. Paraffin-embedded ESCC tissues (n = 183) were selected for immunohistochemical staining to detect OTUB2, YAP1, TAZ, CTGF and their relationship with clinicopathological parameters, then the survival prognosis of ESCC patients was analyzed. Immunofluorescence, western blotting, and qRT-PCR were used to evaluate OTUB2 in ESCC cell lines. Cell lines with the highest expression of OTUB2 were transfected with lentivirus to knockdown OTUB2 levels. Changes in KYSE150 cell proliferation, migration, and invasion were measured using CCK-8, wound healing, and clone formation assays. The Transwell test and flow cytometry identified OTUB2 targets and explored roles and mechanisms involved in ESCC. Effects of OTUB2 on YAP1/TAZ signaling were also observed. RESULTS: Bioinformatics analysis revealed OTUB2 was highly expressed in esophageal cancer and was associated with YAP1/TAZ. Immunohistochemistry showed that OTUB2 expression was increased in ESCC samples compared to parcancerous tissue. YAP1 and TAZ were higher expression in ESCC tissues, mainly localized in the nucleus. Compared with controls, the proliferation, migration, and invasion ability of KYSE150 cells after OTUB2 knockdown were significantly reduced (P < 0.05). The protein expression levels of YAP1, TAZ and CTGF decreased after knocking down the expression of OTUB2 (P < 0.05). OTUB2 knockdown in ESCC cell lines suppressed YAP1/TAZ signaling. CONCLUSIONS: OTUB2 regulated the protein expression of YAP1/TAZ to promote cell proliferation, migration, invasion, and tumor development. Therefore, OTUB2 may represent a biomarker for ESCC and a potential target for ESCC treatment.
RESUMO
Type 2 diabetes mellitus (T2DM) is a major threat to global public health, with increasing prevalence as well as high morbidity and mortality, to which immune dysfunction has been recognized as a crucial contributor. Mesenchymal stromal cells (MSCs), obtained from various sources and possessing potent immunomodulatory abilities, have displayed great therapeutic potential for T2DM. Interestingly, the immunomodulatory capabilities of MSCs are endowed and plastic. Among the multiple mechanisms involved in MSC-mediated immune regulation, the paracrine effects of MSCs have attracted much attention. Of note, extracellular vesicles (EVs), an important component of MSC secretome, have emerged as pivotal mediators of their immunoregulatory effects. Particularly, the necrobiology of MSCs, especially apoptosis, has recently been revealed to affect their immunomodulatory functions in vivo. In specific, a variety of preclinical studies have demonstrated the beneficial effects of MSCs on improving islet function and ameliorating insulin resistance. More importantly, clinical trials have further uncovered the therapeutic potential of MSCs for T2DM. In this review, we outline current knowledge regarding the plasticity and underlying mechanisms of MSC-mediated immune modulation, focusing on the paracrine effects. We also summarize the applications of MSC-based therapies for T2DM in both preclinical studies and clinical trials, with particular emphasis on the modulation of immune system.
Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Células-Tronco Mesenquimais , Apoptose , Diabetes Mellitus Tipo 2/terapia , Humanos , ImunomodulaçãoRESUMO
Contaminated soils have caused serious harm to human health and the ecological environment due to the high toxicity of organic and inorganic pollutants, which has attracted extensive attention in recent years. Because of its low cost, simple operation and high efficiency, soil washing technology is widely used to permanently remove various pollutants in contaminated soils and is considered to be the most promising remediation technology. This review summarized the recent developments in the field of soil washing technology and discusses the application of conventional washing agents, advanced emerging washing agents, the recycling of washing effluents and the combination of soil washing and other remediation technologies. Overall, the findings provide a comprehensive understanding of soil washing technology and suggest some potential improvements from a scientific and practical point of view.
Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Poluição Ambiental , Humanos , Metais Pesados/análise , Solo , Poluentes do Solo/análise , TecnologiaRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous soil contaminants, and their bioaccessibility determines their environmental risks in contaminated land. In the present study, the residual concentrations of PAHs in the soils of two industrial sites were determined, and their bioaccessibility was estimated by the hydroxypropyl-ß-cyclodextrin extraction (HPCD) extraction method. The results showed heavy PAH contamination at both site S1 (0.38-3342.5 mg kg-1) and site S2 (0.2-138.18 mg kg-1), of which high molecular weight (HMW) PAHs (4-, 5-, and 6-ring compounds) accounted for approximately 80%. The average bioaccessibility of PAHs at sites S1 and S2 was 52.02% and 29.28%, respectively. The bioaccessibility of certain PAH compounds decreased with increasing ring number of the molecule. Lower PAH bioaccessibility was detected in loamy and silty soil textures than in sandy soil. Moreover, among the soil properties, the dissolved organic matter, total organic carbon, total potassium, and total manganese concentrations had significant effects on the bioaccessibility of PAHs. The toxicity analysis showed that the composition and bioaccessibility of PAHs could affect their potential toxicity in soil. We suggest that bioaccessibility should be taken into consideration when assessing the toxicity of PAHs in soil, and more attention should be given to low-ring PAHs with high bioaccessibility.
Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , 2-Hidroxipropil-beta-Ciclodextrina , Carbono , Manganês/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Potássio/análise , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidadeRESUMO
Glutamate is an important neurotransmitter. Although many studies have measured glutamate concentration in vivo using magnetic resonance spectroscopy (MRS), researchers have not reached a consensus on the accuracy of glutamate quantification at the field strength of 3 T. Besides, there is not an optimal MRS protocol for glutamate measurement. In this work, both simulation and phantom scans indicate that glutamate can be estimated with reasonable accuracy (<10% error on average) using the standard Point-RESolved Spectroscopy (PRESS) technique with TE 30 ms; glutamine, however, is likely underestimated, which is also suggested by results from human scans using the same protocol. The phantom results show an underestimation of glutamate and glutamine for PRESS with long TE and MEGA-PRESS off-resonance spectra. Despite the underestimation, there is a high correlation between the measured values and the true values (r > 0.8). Our results suggest that the quantification of glutamate and glutamine is reliable but can be off by a scaling factor, depending on the imaging technique. The outputs from all three PRESS sequences (TE = 30, 68 and 80 ms) are also highly correlated with each other (r > 0.7) and moderately correlated (r > 0.5) with the results from the MEGA-PRESS difference spectra with moderate to good shimming (linewidth < 16 Hz).
Assuntos
Ácido Glutâmico/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Ácido Aspártico/análise , Simulação por Computador , Creatina/análise , Glutamina/análise , Inositol/análise , Imagens de Fantasmas , Fosfocreatina/análise , Taurina/análise , Ácido gama-Aminobutírico/análiseRESUMO
Biochar has been deemed one of the most promising sorbents for the removal of organic pollutants from aqueous solution. In this study, potassium hydroxide-modified Enteromorpha prolifera biochars (PEBCs) were prepared for the first time and applied for efficient sorption of a typical antibiotic, sulfamethoxazole (SMX). The characteristics of PEBCs, including morphology, pore structure, graphitization degree, surface functional groups, and surface element composition, were investigated. Moreover, sorption kinetic and isotherm experiments were carried out to explore the sorption process, performance, and mechanisms. The maximum sorption capacity for SMX can reach 744 mg g-1, which is much higher than that reported for sorbents. The sorption of SMX onto PEBCs was controlled by both physical and chemical processes. Moreover, pore filling, hydrogen bonding, partitioning, π-π stacking, and electrostatic interactions were possible sorption mechanisms. This study indicated that the structure and properties of algal biochar can be further improved by potassium hydroxide modification at high temperature and applied as an excellent sorbent for the removal of antibiotics from aqueous solution.
Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Hidróxidos , Compostos de Potássio , Poluentes Químicos da Água/análiseRESUMO
The aim of this study was to evaluate the clinical efficacy of N-acetylcysteine (NAC) in the treatment of ST segment elevation myocardial infarction (STEMI).PubMed, EMBASE, Cochrane Library, and Web of Science were searched systematically from the establishment of the database to June 2020. Two researchers independently completed literature screening and data extraction and conducted a meta-analysis.Nine articles including 1419 patients were enrolled. Meta-analysis showed that all-cause mortality [RR = 0.56, 95%CI (0.33, 0.93), P = 0.02], occurrence of major adverse cardiovascular events (MACE) [RR = 0.63, 95%CI (0.47, 0.85), P = 0.002], and myocardial enzyme hs-TnT level [SMD = -0.42, 95%CI (-0.71, -0.13), P = 0.005] were significantly lower in patients with STEMI treated with NAC than those in the control group. There was no significant difference between the NAC group and the control group in new congestive heart failure [RR = 0.94, 95%CI (0.48, 1.82), P = 0.84], ejection fraction [MD = 2.00, 95%CI (-0.59, 4.60), P = 0.13], and CK-MB [SMD = -0.18, 95%CI (-0.47, 0.11), P = 0.23]. There was no significant difference in the occurrence of adverse reactions between the NAC group and the control group [RR = 1.04, 95%CI (0.57-1.89), P = 0.90].NAC can reduce the all-cause mortality and MACE cases of STEMI.